如何证明绝对值不等式成立?
1个回答
展开全部
绝对值的意思是带绝对值符号的部分去去掉绝对值符号后这部分的值必须大于或等于0;
这个式子带有字母,就要分
1)a>3.5,b<3;
2)a>3.5,b>3;
3)a<3.5,b<3;
4)a<3.5,b》3;
四种情况进行讨论,再去掉绝对值符号运算。方程可化为:
|3+4/k||3k+4|=6
|(3+4/k)(3k+4)|=6
9k+24+16/k=6,或9k+24+16/k=-6
由9k+24+16/k=6得9k²+18k+16=0
该方程无实数根又由9k+24+16/k=-6得:
9k²+30k+16=0
3k+2=0或3k+8=0
所以,原方程的根为:k1=-3/2,k2=-8/3
扩展资料:
性质:
|a|表示数轴上的点a与原点的距离叫做数a的绝对值。
两个重要性质:
1、|ab|
=
|a||b|
|a/b|
=
|a|/|b|
(b≠0)
2、|a|<|b|
可逆推出
|b|>|a|
||a|
-
|b||
≤
|a+b|
≤
|a|+|b|,当且仅当
ab≤0
时左边等号成立,ab≥0
时右边等号成立。
另外有:|a-b|
≤
|a|+|-b|
=
|a|+|-1|*|b|
=
|a|+|b|
|
|a|-|b|
|
≤
|a±b|
≤
|a|+|b|
这个式子带有字母,就要分
1)a>3.5,b<3;
2)a>3.5,b>3;
3)a<3.5,b<3;
4)a<3.5,b》3;
四种情况进行讨论,再去掉绝对值符号运算。方程可化为:
|3+4/k||3k+4|=6
|(3+4/k)(3k+4)|=6
9k+24+16/k=6,或9k+24+16/k=-6
由9k+24+16/k=6得9k²+18k+16=0
该方程无实数根又由9k+24+16/k=-6得:
9k²+30k+16=0
3k+2=0或3k+8=0
所以,原方程的根为:k1=-3/2,k2=-8/3
扩展资料:
性质:
|a|表示数轴上的点a与原点的距离叫做数a的绝对值。
两个重要性质:
1、|ab|
=
|a||b|
|a/b|
=
|a|/|b|
(b≠0)
2、|a|<|b|
可逆推出
|b|>|a|
||a|
-
|b||
≤
|a+b|
≤
|a|+|b|,当且仅当
ab≤0
时左边等号成立,ab≥0
时右边等号成立。
另外有:|a-b|
≤
|a|+|-b|
=
|a|+|-1|*|b|
=
|a|+|b|
|
|a|-|b|
|
≤
|a±b|
≤
|a|+|b|
彩驰科技
2024-11-24 广告
2024-11-24 广告
作为北京彩驰科技有限公司的工作人员,我们推荐选择有丰富备案经验和专业能力的第三方机构来办理文生图算法备案。这些机构能够提供一站式服务,包括协助准备相关资料、跟进审批流程、提供咨询服务等,可以大大缩短备案周期,降低时间成本。在选择时,除了关注...
点击进入详情页
本回答由彩驰科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询