微分几何,求解答?
展开全部
(1)证明:对∀(x1;y1),(x2;y2)∈V,∀k∈数域P,有
T(x1;y1)+T(x2;y2)
=(x1-y1; x1+y1; 2x1)+(x2-y2; x2+y2; 2x2)
=(x1+x2-y1-y2; x1+x2+y1+y2; 2x1+2x2)
=T(x1+x2; y1-y2)
T[k*(x1;y1)]
=T(kx1;ky1)
=(kx1-ky1; kx1+ky1; 2kx1)
=k*(x1-y1; x1+y1; 2x1)
=k*T(x1;y1)
所以T为V上的线性变换
(2)令T=(T11,T12; T21,T22; T31,T32)
因为T(x;y)=(x-y;x+y;2x),所以
①T11*x+T12*y=x-y
②T21*x+T22*y=x+y
③T31*x+T32*y=2x
所以T11=1,T12=-1,T21=1,T22=1,T31=2,T32=0
即T=(1,-1; 1,1; 2,0)
T(x1;y1)+T(x2;y2)
=(x1-y1; x1+y1; 2x1)+(x2-y2; x2+y2; 2x2)
=(x1+x2-y1-y2; x1+x2+y1+y2; 2x1+2x2)
=T(x1+x2; y1-y2)
T[k*(x1;y1)]
=T(kx1;ky1)
=(kx1-ky1; kx1+ky1; 2kx1)
=k*(x1-y1; x1+y1; 2x1)
=k*T(x1;y1)
所以T为V上的线性变换
(2)令T=(T11,T12; T21,T22; T31,T32)
因为T(x;y)=(x-y;x+y;2x),所以
①T11*x+T12*y=x-y
②T21*x+T22*y=x+y
③T31*x+T32*y=2x
所以T11=1,T12=-1,T21=1,T22=1,T31=2,T32=0
即T=(1,-1; 1,1; 2,0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询