求1/[(1+x)(1+x2)]在(0,正无穷)上的定积分
1个回答
展开全部
pi/8
令x=1/t,换元后有:
∫t/[(1+t)(1+t^2)]dt 积分限不变
所以,这个换元后的式子和原始的相加有:
(1/2)I=∫1/(1+x^2)dx 积分限0到∞
得:I=(1/2)arctanx 代人积分限有
I=pi/8
令x=1/t,换元后有:
∫t/[(1+t)(1+t^2)]dt 积分限不变
所以,这个换元后的式子和原始的相加有:
(1/2)I=∫1/(1+x^2)dx 积分限0到∞
得:I=(1/2)arctanx 代人积分限有
I=pi/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询