数列收敛的充要条件
1个回答
展开全部
充要条件:设有一数列{Xn},该数列收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>n>N时就有|Xn-Xm|<ε等。
条件
1)数列收敛的基本定义
设{Xn}为一已知数列,A是一个常数。如果对于任意给定的正数ε,总存在一个正整数N=N(ε),使得当n>N时,有|Xn-A|<ε,则称数列{Xn}当n趋于无穷时以A为极限,或称数列{Xn}收敛于A。
2)夹挤定理
如果有三个数列{Pn}{Xn}{Qn}。且当n足够大以后,满足条件Pn≤Xn≤Qn。如果当n趋于无穷时,{Pn}和{Qn}都收敛于A,那么数列{Xn}也收敛于A。
3)单调有界原理
任何单调(单调递增或递减)且有界的数列都收敛。
4)柯西收敛准则
设有一数列{Xn},该数列收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>n>N时就有|Xn-Xm|<ε
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询