已知3x-2y-5z=0,2x-5y+4z=0,且x,y,z均不为0,求3x*x+2y*y+5z*z/5x*x+y*y-?
1个回答
展开全部
【解】
视z为常数,由已知两方程,可解得
x=3z
y=2z
将其代入待求值式中,得
3x*x+2y*y+5z*z/5x*x+y*y-9z*z
=[3(3z)^2+2(2z)^2+5z^2]/[5(3z)^2+(2z)^2-9z^2]
=40z^2/40z^2
=1,8,视z为常数,由已知两方程,可解得
x=3z ,
y=2z
将其代入3x*x+2y*y+5z*z/5x*x+y*y-9z*z中,
得
3*(3z)*(3z)+2*(2z)*(2z)+5z*z/5*(3z)*(3z)+(2z)*(2z)-9z*z
=40z*z/40z*z
=1,2,解:
由3x-2y-5z=0,2x-5y+4z=0得
y=2z x=3z
原式=(3*3z*3z+2*2z*2z+5*z*z)/(5*3z*3z+2z*2z-9*z*z)
=(27+8+5)/(45+4-9)
=40/40=1,2,2x+3y* 6x-4y-5y*,0,已知3x-2y-5z=0,2x-5y+4z=0,且x,y,z均不为0,求3x*x+2y*y+5z*z/5x*x+y*y-9z*z的值.
视z为常数,由已知两方程,可解得
x=3z
y=2z
将其代入待求值式中,得
3x*x+2y*y+5z*z/5x*x+y*y-9z*z
=[3(3z)^2+2(2z)^2+5z^2]/[5(3z)^2+(2z)^2-9z^2]
=40z^2/40z^2
=1,8,视z为常数,由已知两方程,可解得
x=3z ,
y=2z
将其代入3x*x+2y*y+5z*z/5x*x+y*y-9z*z中,
得
3*(3z)*(3z)+2*(2z)*(2z)+5z*z/5*(3z)*(3z)+(2z)*(2z)-9z*z
=40z*z/40z*z
=1,2,解:
由3x-2y-5z=0,2x-5y+4z=0得
y=2z x=3z
原式=(3*3z*3z+2*2z*2z+5*z*z)/(5*3z*3z+2z*2z-9*z*z)
=(27+8+5)/(45+4-9)
=40/40=1,2,2x+3y* 6x-4y-5y*,0,已知3x-2y-5z=0,2x-5y+4z=0,且x,y,z均不为0,求3x*x+2y*y+5z*z/5x*x+y*y-9z*z的值.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询