已知Sn为数列{an}的前n项和,a1=1,Sn=n²•an,求数列{an}的通项公式?
展开全部
Sn=n²an (1)
S(n-1)=(n-1)²a(n-1) n≥2 (2)
(1)-(2)
an=n²an-(n-1)²a(n-1) n≥2
(n²-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1)
a(n)/a(n-1)=(n-1)/(n+1)
an =[a(n)/a(n-1)]*[a(n-1)/a(n-2)]*[a(n-2)/a(n-3)]*.*[a3/a2]*[a2/a1]* a1
=[(n-1)/(n+1)]*[(n-2)/n]*[(n-3)/(n-1)]*.(2/4)*(1/3) *a1
=(1*2)/[n(n+1)]*(1/2)
所以 an=1/(n²+n)
请好评
如果你认可我的回答,敬请及时采纳,
~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~
~手机提问的朋友在客户端右上角评价点【满意】即可.
~你的采纳是我前进的动力~~
O(∩_∩)O,记得好评和采纳,互相帮助,4,
S(n-1)=(n-1)²a(n-1) n≥2 (2)
(1)-(2)
an=n²an-(n-1)²a(n-1) n≥2
(n²-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1)
a(n)/a(n-1)=(n-1)/(n+1)
an =[a(n)/a(n-1)]*[a(n-1)/a(n-2)]*[a(n-2)/a(n-3)]*.*[a3/a2]*[a2/a1]* a1
=[(n-1)/(n+1)]*[(n-2)/n]*[(n-3)/(n-1)]*.(2/4)*(1/3) *a1
=(1*2)/[n(n+1)]*(1/2)
所以 an=1/(n²+n)
请好评
如果你认可我的回答,敬请及时采纳,
~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~
~手机提问的朋友在客户端右上角评价点【满意】即可.
~你的采纳是我前进的动力~~
O(∩_∩)O,记得好评和采纳,互相帮助,4,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询