设a,b,c,x,y,z,都是正数,且a^2+b^2+c^2=25.,x^2+y^2+z^2=36,ax+by+cz=30.求(a+b+c)/(x+y+z)

 我来答
新科技17
2022-08-16 · TA获得超过5897个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.5万
展开全部
因为 a^2+b^2+c^2=25.,x^2+y^2+z^2=36由柯西不等式 (a^2+b^2+c^2)*(x^2+y^2+z^2)≥(ax+by+cz)^2所以 25*36≥(ax+by+cz)^2即 ax+by+cz ≤30 当且仅当 a/x =b/y =c/z 时等号成立而由题可得ax+by+cz=30 说明等...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式