为什么傅里叶变换的反变换是逆傅里叶变换?

 我来答
帐号已注销
2022-11-07 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:158万
展开全部

因为:在阶跃函数的傅里叶变换中存在πδ(ω)冲击函数,这个函数是由于阶跃函数中存在直流分量导致的。直流电的频率ω=0,恰好对应δ(ω)函数在频率ω=0处存在的脉冲。

傅立叶变换对有多种定义形式,如果采用下列变换对,即:F(ω)=∫(∞,-∞)f(t)e^(-iωt)dtf(t)=(1/2π)∫(∞,-∞)F(ω)e^(iωt)dω。

令:f(t)=δ(t)∫(∞,-∞)δ(t)e^(-iωt)dt=1而上式的反变换:(1/2π)∫(∞,-∞)1e^(iωt)dt=δ(t)//:Diracδ(t)函数;从而得到常数1的傅里叶变换等于:2πδ(t)。

从傅里叶积分变换角度看

第二种定义来得更自然,它正好可以用“符号函数与1之和”再除2来定义,而且计算逆傅里叶变换时我们必须用到这个定义。如果考虑半域问题,例如Laplace积分变换,即可以采用第一种定义,也可以采用第三种定义或 H(x) = 1/2(1+sgn(x))。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式