如何判断函数是否在某点可导呢?

 我来答
景爱呀要休闲
高粉答主

2023-01-09 · 分享休闲娱乐中的点滴感悟及一些小故事
景爱呀要休闲
采纳数:345 获赞数:42897

向TA提问 私信TA
展开全部

函数在某点可导的充分必要条件:某点的左导数与右导数存在且相等。

判断不可导:

1、证明左导数不等于右导数

2、证明左导数或者右导数不存在(无穷大或者不可取值)

例如:

f(x)=x的绝对值,但当x<0时,f(x)的导数等于-1,当x>0是,f(x)的导数等于1。

不相等,所以在x=0处不可导。

可导函数、不可导函数和物理、几何、代数的关系:

导数与物理、几何和代数关系密切:在几何中可以求正切;在代数中可以求瞬时变化率;在物理中可以求速度和加速度。物理学、几何学、经济学等学科中的一些重要概念可以用导数来表示。

例如,导数可以表示运动物体的瞬时速度和加速度(对于线性运动,位移的一阶导数是相对于时间的瞬时速度,二阶导数是加速度),曲线在一点的斜率,以及经济学中的边际和弹性。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式