高一数学题,请求解答
高一数学题,请求解答
m^2+n^2>=2mn=200。
当且仅当m=n=+-10时,等号成立,
所以,m^2+n^2的最小值是200。
过程不用了叭,手机太难打。。答案是3/4。保证正确噢。~(^-^)
高一数学题..请求解答!急!
1. 2 或 3
2. -4
3. (-1,+∞)
4. (-∞,5/3]
5. a=1 , b=3
6. -5 或 1/3
7.估计你题目打错了吧,是不是A真含B
a+4≤-1 或 a>5
解得 a≤-5 或 a>5
8.A∩B,即直线y=x+1与抛物线y=x²-3x+4的交点
将y=x+1代入y=x²-3x+4
则 x+1=x²-3x+4
∴x²-4x+3=0
解得 x=1 或 x=3
当x=1时 y=2
当x=3时 y=4
∴A∩B={(1,2),(3.4)}
高一数学题~请求解答过程
在根号里配出一个二次式:
原式=√3+7-2√3*√7
=√ 2
(√7-√3)
=│√7-√3│
=√7-√3
注:第二个等号后为 根号下根7减根3的和的平方。
高一数学题,求解答
1...4x+y-14=0
2.7x-2y-3=0
3.x-2y-3=0
4.
x+y=√2sin(θ+π/4)=sinθ+cosθ
x-y=√2sin(θ-π/4)=sinθ-cosθ
所以x=sinθ,y=cosθ
所以x²+y²=1
如果不懂,请追问,祝学习愉快!
只要分母不为0,函式自变数x为一切实数R都有意义,所以只要讨论分母不为0恒成立K的取值范围即可(讨论分母这样形如二次函式的式子时,一定要看二次项前面系数是否为引数,如有引数,需按二次项系数等不等于0来讨论,因为它决定分母是不是二次函式),所以:
1、当k=0是,y=1,x属于R恒成立;
2、当k不等于0时,只要分母恒不为0即可,也就是判别式<0(分母二次函式影象与x轴无交点),0<k<1.
所以k大于等于0小于1
解:(Ⅰ)∵an+1=2Sn,
∴Sn+1-Sn=2Sn,
∴=3,
又∵S1=a1=1,
∴数列{Sn}是首项为1,公比为3的等比数列,Sn=3n-1(n∈N*)。
∴当n≥2时,an=2Sn-1=2·3n-2(n≥2),
∴an=;
(Ⅱ)Tn=a1+2a2+3a3+…+nan,
当n=1时,T1=1;
当n≥2时,Tn=1+4·30+6·31+2n·3n-2,………①
3Tn=3+4·31+6·32+…+2n·3n-1,…………②
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n·3n-1
=2+2·=-1+(1-2n)·3n-1,
∴Tn=+(n-)3n-1(n≥2),
又∵T1=a1=1也满足上式,
∴Tn=+(n-)3n-1(n∈N*)。
tan^2a+tana-6=0 (tana+3)(tana-2)=0 tana=-3 tana=2(舍去)cos^2a=1/(1+3^2)=1/10
1)=(√3-tana)/(√3+tana)=(√3+3)/(√3-3)=-1/6(12+6√3)=-√3-2
2)=2sin^2a+2-3(6cos^2a-sin^2a)=5sin^2a+2-18cos^2a=7-25cos^2a=7-25/10=9/2
作出函式的影象,再作出其绝对值影象(在x轴下的对称到x轴上面)
设y=ax 观察影象取特殊点