数学发展史分为哪几个阶段以及各个阶段的成果

 我来答
大沈他次苹0B
2022-10-12 · TA获得超过7298个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:173万
展开全部

1(前3500-前500)数学起源与早期发展: 古埃及数学、美索不达米亚(古巴比伦)数学

2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何

3(3世纪-14世纪)中世纪的中国数学、印度数学、 *** 数学:实用数学的辉煌

4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生

5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立

6(18世纪-19世纪)分析时代:微积分的各领域应用

7(19世纪)代数的新生:抽象代数产生(近世代数)

8(19世纪)几何学的变革:非欧几何

9(19世纪)分析的严密化:微积分的基础的严密化

10二十世纪的纯粹数学的趋势

11二十一世纪应用数学的天下

以上是按数学发展的脉络进行划分的,不是按时间顺序,时代也都标注了。

如果在简单说就是 1古代数学 希腊的论证数学与中国的实用数学的起源发展

2近代数学 微积分的发现、应用、严密化

3现代数学 对数学的基础的思考

其他的都是这三个大的数学发展脉络的附属品,贯穿数学发展的思想只有2个,就是希腊贵族式的论证数学与中国平民是的实用数学的思想的起源、发展、相互影响。

(其中贵族数学是说希腊贵族人研究数学,平民不接触)

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式