解析几何历史
几何的形成历史
几何学的发展大致经历了四个基本阶段.1、实验几何的形成和发展几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何.我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容.例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”,古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴.2、理论几何的形成和发展随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊.古希腊许多数学家,如泰勒斯(Thales)、毕达哥拉斯(Pythagoras)、柏拉图(Plato)、欧几里德(Euclid)等人都对几何学的研究作出了重大贡献.特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著.《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝.3、解析几何的产生与发展公元3世纪,《几何原本》的出现,为理论几何奠定了基础.与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质.但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视.直到15、16世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展.法国笛卡尔(Descartes)在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径.在这样的思想指导下,笛卡尔提出了平面坐标系的概念,实现了点与数对的对应,将圆锥曲线用含有两面三刀个求知数的方程来表示,并且形成了一系列全新的理论与方法,解析几何就这样产生了.解析几何学的出现,大大拓广了几何学的研究内容,并且促进了几何学的进一步发展.18、19世纪,由于工程、力学和大地测量等方面的需要,又进一步产生了画法几何、射影几何、仿射几何和微分几何等几何学的分支.4、现代几何的产生与发展在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果.一方面,从改变几何的公理系统出发,即用和欧氏几何第五公设相矛盾的命题来代替第五公设,从而导致几何学研究对象的根本突破.俄罗斯数学家罗巴切夫斯基用“在同一平面内,过直线外一点可作两条直线平行于已知直线”代替第五公设,由此导出了一系列新结论,如“三角形内角和小于两直角”、“不存在相似而不全等的三角形”等等,后人称为罗氏几何学(又称双曲几何学).德国数学家黎曼从另一角度,“在同一平面内,过直线外任一点不存在直线平行于已知直线”代替第五公设,同样导致了一系列新理论,如“三角形内角和大于两直角”、“所成三角形与球面三角形有相同面积公式”等,又得到另一种不同的几何学,后人称为黎氏几何学(又称椭圆几何学).习惯上,人们将罗氏几何、黎氏几何统称为非欧几何学.将欧氏几何(又称抛物几何学)、罗氏几何的公共部分统称为绝对几何学.另一方面,人们在对欧氏几何公理系统的严格分析中,形成了公理法,并由德国数学家希尔伯特在他所著《几何基础》中完善地建立起严格的公理体系,通常称为希尔伯特公理体系,希尔伯特公理体系是完备的,即用纯逻辑推理的方法,定能推演出系统严密的欧氏几何学.但如果根据该公理体系,逐步推演出欧氏几何中那些熟知的内容,却是一件相当繁琐的工作.。
解析几何发展史
十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。
比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。
笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。
从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。
这就是解析几何的基本思想。 具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。
从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。 解析几何的产生并不是偶然的。
在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。
在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。 费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。
他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想。
只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。 笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。
解析几何的基本内容 在解析几何中,首先是建立坐标系。如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。
利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。
在空间坐标系中还有球坐标和柱面坐标。 坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。
用这种方法研究几何学,通常就叫做解析法。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。
解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。
恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……” 解析几何的应用 解析几何又分作平面解析几何和空间解析几何。 在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。
在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。 椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。
比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。 总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。
运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。 坐标法的思想促使人们运用各种代数的方法解决几何问题。
先前被看作几何学中的难题,一旦运用代数方法后就变得平。
几何图形的历史
最早的几何学当属平面几何。
平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。
平面几何的内容也很自然地过渡到了三维空间的立体几何。 为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。
笛卡尔引进坐标系后,代数与几何的关系变得明朗, 且日益紧密起来。这就促使了解析几何的产生。
解析几何是由笛卡尔、费马分别独立创建的。这又是一次具有里程碑意义的事件。
从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。 几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。
立体几何归结为三维空间解析几何的研究范畴,从而研究二次曲面(如球面,椭球面、锥面、双曲面,鞍面)的几何分类问题,就归结为研究代数学中二次型的不变量问题。 总体上说,上述的几何都是在欧氏空间的几何结构--即平坦的空间结构--背景下考察,而没有真正关注弯曲空间下的几何结构。
欧几里得几何公理本质上是描述平坦空间的几何特性,特别是第五公设引起了人们对其正确性的疑虑。由此人们开始关注其弯曲空间的几何, 即“非欧几何”。
非欧几何中包括了最经典几类几何学课题, 比如“球面几何”,“罗氏几何”等等。另一方面,为了把无穷远的那些虚无缥缈的点也引入到观察范围内, 人们开始考虑射影几何。
这些早期的非欧几何学总的来说,是研究非度量的性质,即和度量关系不大,而只关注几何对象的位置问题--比如平行、相交等等。 这几类几何学所研究的空间背景都是弯曲的空间。
空间解析几何的发展史
间解析几何
题组一 向量及其运算
1. 是非题
(1) 若 且 ,则 ;
(2) 若 且 ,则 ;
(3) ;
(4) ;
(5) ;
(6) .
2. 证明 (1) 。 (2) 。
(3) 。
3. 设 , ,
(1) 试证 , , 共面。 (2)沿 和 分解 。 (3)求 在 上的投影。
4. 设 , , 均为非零向量,且 , , ,求 。
5. 设 且 , , ,求 。
6. 设 , ,求 与 的夹角。
7. 已知 , ,
(1)证明 。
(2)当 与 的夹角为何值时, 的面积取最大值。
8. 用向量证明:三角形的三条高交于一点。
题组二 空间平面与直线
1. 设平面 过点 且与已知平面 垂直,又与直线 平行,求平面 的方程。
2. 求过直线 与点 的平面方程。
3. 设有一平面,它与 平面的交线是 ,且与三个坐标面围成的四面体体积等于2,求这平面的方程。
4. 一直线过点 且和两直线 , 相交,求此直线方程。
5. 过平面 : 和直线 的交点,求在已知平面上,垂直于已知直线的直线方程。
6. 在一切过直线 的平面中求一平面,使原点到它的距离为最大。
题组三 空间曲面与曲线
1. 讨论平面 与曲面 间相互的位置关系。
2. 设空间曲线 ,试将曲线 的方程用母线平行于x轴和z轴的两个投影柱面的方程表示。
3. 求锥面 与柱面 所围立体在三个坐标平面上的投影区域。
4. 求直线 绕z轴旋转而成的旋转曲面的方程。
5. 柱面的准线为 ,母线的方向向量为 ,求柱面的方程。
几何的发展史?是怎样的
名称由来几何这个词最早来自于希腊语“γεωμετρ?α”,由“γ?α”(土地)和“μετρε ?ν”(测量)两个词合成而来,指土地的测量,即测地术。
后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。
当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。
在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一词的使用出现。
古代几何国外最早记载可以追溯到古埃及、古印度、古巴比伦,其年代大约始于公元前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。
埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)体积正确公式;而巴比伦有一个三角函数表。中国中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。
也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。几何学发展几何学发展历史悠长,内容丰富。
它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。
目前的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。平面几何与立体几何最早的几何学当属 平面几何。
平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。
平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。
笛卡尔引进坐标系后,代数与几何的关系变得明朗, 且日益紧密起来。这就促使了解析几何的产生。
解析几何是由笛卡尔、费马分别独立创建的。这又是一次具有里程碑意义的事件。
从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。
立体几何归结为三维空间解析几何的研究范畴,从而研究二次曲面(如球面,椭球面、锥面、双曲面,鞍面)的几何分类问题,就归结为研究代数学中二次型的不变量问题。总体上说,上述的几何都是在欧氏空间的几何结构--即平坦的空间结构--背景下考察,而没有真正关注弯曲空间下的几何结构。
欧几里得几何公理本质上是描述平坦空间的几何特性,特别是第五公设引起了人们对其正确性的疑虑。由此人们开始关注其弯曲空间的几何, 即“非欧几何”。
非欧几何中包括了最经典几类几何学课题, 比如“球面几何”,“罗氏几何”等等。另一方面,为了把无穷远的那些虚无缥缈的点也引入到观察范围内, 人们开始考虑射影几何。
这些早期的非欧几何学总的来说,是研究非度量的性质,即和度量关系不大,而只关注几何对象的位置问题--比如平行、相交等等。 这几类几何学所研究的空间背景都是弯曲的空间。
几何的形成历史
几何学的发展大致经历了四个基本阶段。
1、实验几何的形成和发展几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何。我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容。
例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”, 古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴。2、理论几何的形成和发展随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊。
古希腊许多数学家,如泰勒斯(Thales)、毕达哥拉斯(Pythagoras)、柏拉图(Plato)、欧几里德(Euclid)等人都对几何学的研究作出了重大贡献。特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著。
《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝。3、解析几何的产生与发展公元3世纪,《几何原本》的出现,为理论几何奠定了基础。
与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质。但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视。
直到15、16世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展。法国笛卡尔(Descartes)在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。
在这样的思想指导下,笛卡尔提出了平面坐标系的概念,实现了点与数对的对应,将圆锥曲线用含有两面三刀个求知数的方程来表示,并且形成了一系列全新的理论与方法,解析几何就这样产生了。解析几何学的出现,大大拓广了几何学的研究内容,并且促进了几何学的进一步发展。
18、19世纪,由于工程、力学和大地测量等方面的需要,又进一步产生了画法几何、射影几何、仿射几何和微分几何等几何学的分支。4、现代几何的产生与发展在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。
一方面,从改变几何的公理系统出发,即用和欧氏几何第五公设相矛盾的命题来代替第五公设,从而导致几何学研究对象的根本突破。俄罗斯数学家罗巴切夫斯基用“在同一平面内,过直线外一点可作两条直线平行于已知直线”代替第五公设,由此导出了一系列新结论,如“三角形内角和小于两直角”、“不存在相似而不全等的三角形”等等,后人称为罗氏几何学(又称双曲几何学)。
德国数学家黎曼从另一角度,“在同一平面内,过直线外任一点不存在直线平行于已知直线”代替第五公设,同样导致了一系列新理论,如“三角形内角和大于两直角”、“所成三角形与球面三角形有相同面积公式”等,又得到另一种不同的几何学,后人称为黎氏几何学(又称椭圆几何学)。习惯上,人们将罗氏几何、黎氏几何统称为非欧几何学。
将欧氏几何(又称抛物几何学)、罗氏几何的公共部分统称为绝对几何学。另一方面,人们在对欧氏几何公理系统的严格分析中,形成了公理法,并由德国数学家希尔伯特在他所著《几何基础》中完善地建立起严格的公理体系,通常称为希尔伯特公理体系,希尔伯特公理体系是完备的,即用纯逻辑推理的方法,定能推演出系统严密的欧氏几何学。
但如果根据该公理体系,逐步推演出欧氏几何中那些熟知的内容,却是一件相当繁琐的工作。
广告 您可能关注的内容 |