已知函数,试求其定积分
展开全部
结果是 (1/2)[arcsinx + x√(1 - x²)] + C
x = sinθ,dx = cosθ dθ
∫ √(1 - x²) dx = ∫ √(1 - sin²明尘θ)(cosθ dθ) = ∫ cos²θ dθ
= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C
= (arcsinx)/2 + (sinθcosθ)/2 + C
= (arcsinx)/2 + (x√(1 - x²))/2 + C
= (1/2)[arcsinx + x√(1 - x²)] + C
拓展资料
这个根冲唯号下的不定积分,符合模型∫√a²-x² dx,本题中就是a=1的情况。根据sin²x+cos²x=1,用sinθ替换x,然后被积函数,被积变量都要改变。
要做出如图所示的三角形,激判禅更容易加深理解。最后要把中间变量θ变回x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询