12.12题:求下列齐次线性方程组AX=0的基础解系与通解,其中系数矩阵A为:?
1个回答
展开全部
(1) A-->
r2+2r1,r3+3r1,r2*(1/7)
1 2 -3 -2
0 7 -1 0
0 14 -2 0
r3-2r2
1 2 -3 -2
0 1 -1/7 0
0 0 0 0
r1-2r2
1 0 -19/7 -2
0 1 -1/7 0
0 0 0 0
基础解系为:a1=(19,1,7,0)',a2=(2,0,0,1)'
通解为:c1a1+c2a2,c1,c2为任意常数
r2-3r1,r3-4r1
1 2 4 -3
0 -1 -6 5
0 -3 -18 15
r1+2r2,r3-3r2,r2*(-1)
1 0 -8 7
0 1 6 -5
0 0 0 0
基础解系为:a1=(8,-6,1,0)',a2=(7,-5,0,-1)'
通解为:c1a1+c2a2,c1,c2为任意常数,4,1)将系数矩阵化简,
1 -2 -3 -2 第一行乘2加到第二行 1 -2 -3 -2 1 -2 -3 -2
-2 3 5 4 第一行乘3加到第三行 0 7 -1 0 0 7...,1,12.12题:求下列齐次线性方程组AX=0的基础解系与通解,其中系数矩阵A为:
求下列齐次线性方程组AX=0的基础解系与通解,其中系数矩阵A为:(1)(1,2,-3,-2;-2,3,5,4,;-3,8,7,6);(2)(1,2,4,-3;3,5,6,-4;4,5,-2,3)
r2+2r1,r3+3r1,r2*(1/7)
1 2 -3 -2
0 7 -1 0
0 14 -2 0
r3-2r2
1 2 -3 -2
0 1 -1/7 0
0 0 0 0
r1-2r2
1 0 -19/7 -2
0 1 -1/7 0
0 0 0 0
基础解系为:a1=(19,1,7,0)',a2=(2,0,0,1)'
通解为:c1a1+c2a2,c1,c2为任意常数
r2-3r1,r3-4r1
1 2 4 -3
0 -1 -6 5
0 -3 -18 15
r1+2r2,r3-3r2,r2*(-1)
1 0 -8 7
0 1 6 -5
0 0 0 0
基础解系为:a1=(8,-6,1,0)',a2=(7,-5,0,-1)'
通解为:c1a1+c2a2,c1,c2为任意常数,4,1)将系数矩阵化简,
1 -2 -3 -2 第一行乘2加到第二行 1 -2 -3 -2 1 -2 -3 -2
-2 3 5 4 第一行乘3加到第三行 0 7 -1 0 0 7...,1,12.12题:求下列齐次线性方程组AX=0的基础解系与通解,其中系数矩阵A为:
求下列齐次线性方程组AX=0的基础解系与通解,其中系数矩阵A为:(1)(1,2,-3,-2;-2,3,5,4,;-3,8,7,6);(2)(1,2,4,-3;3,5,6,-4;4,5,-2,3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询