四种求极限的常用方法
展开全部
求极限的常用方法如下:
1、利用函数的连续性求函数的极限(直接带入即可)
如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。
2、利用有理化分子或分母求函数的极限
a.若含有,一般利用去根号
b.若含有,一般利用,去根号
3、利用两个重要极限求函数的极限
4、利用无穷小的性质求函数的极限
性质1:有界函数与无穷小的乘积是无穷小
性质2:常数与无穷小的乘积是无穷小
性质3:有限个无穷小相加、相减及相乘仍旧无穷小
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询