样本方差和总体方差有什么区别

 我来答
沫汐昔
2023-01-16
知道答主
回答量:45
采纳率:100%
帮助的人:1.1万
展开全部

样本方差和总体方差的区别:

1、定义不同

总体方差是一组资料中各数值与其算术平均数离差平方和的平均数。样本方差是样本关于给定点x在直线上散布的数字特征之一,其中的点x称为方差中心。样本方差数值上等于构成样本的随机变量对离散中心x之方差的平方和。

2、总体方差:也叫做有偏估计,其实就是我们从初高中就学到的那个标准定义的方差,除数是N。如“果实现已知期望值,比如测水的沸点,那么测量10次,测量值和期望值之间是独立的(期望值不依测量值而改变,随你怎么折腾,温度计坏了也好,看反了也好,总之,期望值应该是100度),那么E『(X-期望)^2』,就有10个自由度。事实上,它等于(X-期望)的方差,减去(X-期望)的平方。” 所以叫做有偏估计,测量结果偏于那个”已知的期望值“。

样本方差:无偏估计、无偏方差。对于一组随机变量,从中随机抽取N个样本,这组样本的方差就是Xi^2平方和除以N-1。这可以推导出来的。如果现在往水里撒把盐,水的沸点未知了,那我该怎么办? 我只能以样本的平均值,来代替原先那个期望100度。 同样的过程,但原先的(X-期望),被(X-均值)所代替。 设想一下(Xi-均值)的方差,它不在等于Xi的方差, 而是有一个协方差,因为均值中,有一项Xi/n是和Xi相关的,这就是那个"偏"的由来。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式