SPSS做的逐步回归分析,怎样解释结果?

 我来答
惠企百科
2022-09-29 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

1、用每个自变量的标准化B/所有自变量标准化B之和,得出的百分比 即可表示该自变量对因变量的贡献占比,

2、逐步回归的基本思想是将变量逐个引入模型,每引入一个解释变量后都要进行F检验,并对已经选入的解释变量逐个进行t检验,当原来引入的解释变量由于后面解释变量的引入变得不再显著时,则将其删除。

以确保每次引入新的变量之前回归方程中只包含先主动变量。这是一个反复的过程,直到既没有显著的解释变量选入回归方程,也没有不显著的解释变量从回归方程中剔除为止。以保证最后所得到的解释变量集是最优的。

扩展资料:

SPSS进行逐步回归分析:

在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更较好。

逐步回归分析,首先要建立因变量y与自变量x之间的总回归方程,再对总的方程及每—个自变量进行假设检验。当总的方程不显著时,表明该多元回归方程线性关系不成立;而当某—个自变量对y影响不显著时,应该把它剔除,重新建立不包含该因子的多元回归方程。筛选出有显著影响的因子作为自变量,并建立“最优”回归方程。

回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测值
的误差也愈小,模拟的效果愈好。但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。因此在多元回归模型中,选择适宜的变量数目尤为重要。

SPSSAU
2023-07-07 · 百度认证:SPSSAU官方账号,优质教育领域创作者
SPSSAU
SPSSAU,也称"在线SPSS",一款网页版数据科学算法平台系统,提供"拖拽点一下"的极致体验和智能化分析结果。
向TA提问
展开全部

SPSS做的逐步回归分析,怎样解释结果?

举例进行说明。某研究收集到美国50个州关于犯罪率的一组数据,包括人口、面积、收入、文盲率、高中毕业率、霜冻天数、犯罪率共7个指标,现在我们想考察一下州犯罪率和哪些指标有关。

从数据分析的目的上,我们想了解犯罪率是否受到人口、面积、收入、文盲率、高中毕业率、霜冻天数6个方面的影响。影响因素分析,可以考虑回归分析、方差分析等统计方法,考虑到目标变量即因变量犯罪率为连续型数据,其他6个指标也为连续型变量,因此考虑尝试拟合多重线性回归模型,用以研究犯罪率的影响因素。

其中,犯罪率作为因变量,其他人口、面积等6个变量作为自变量。为高效分析、精简模型,本例将采用逐步回归的方式由模型自动筛选对因变量有影响的自变量。

自变量个数较少时,可采取强制纳入的方式,自变量个数较多时,可考虑采取逐步回归。有的研究会根据样本量大小,选择先做一元线性回归,逐个考察单个自变量的影响,然后再选择有显著影响的自变量做多重线性回归。结合相关性结果与样本量,本例拟直接采用逐步回归,接下来做多重线性逐步回归。

在“进阶方法”栏目下,选择【逐步回归】,将犯罪率拖拽至【定量Y】框内,人口、面积等6个自变量拖拽至【定量/定类X】框内。默认勾选【保存残差和预测值】,默认选择【逐步法】进行回归。最后点击“开始分析”即可。

SPSSAU对用户极为友好,逐步回归的操作只需要拖拽变量即可完成,极大降低新手的操作难度。

回归分析结果解读:
SPSSAU输出的回归结果表格,是一张整合后的三线表表格,内含回归系数、自变量显著性t检验、模型评价决定系数R评分,以及总体回归模型显著性检验结果。具体见下图。

(1)最终模型中只保留了人口、文盲率,人口、文盲率对犯罪率的影响有统计学意义(t=2.808,p=0.007;t=6.978,p<0.01);面积、收入、高中毕业率、霜冻天数不在模型内,说明这4个自变量对犯罪率的影响无统计学意义。由标准化回归系数可知,对犯罪率的影响,相对而言是文盲率比人口相对要重要。

(2)回归模型:Hat Y = 1.652+0.00022*人口+4.081*文盲率;回归模型总体有统计学意义(F=30.75,P<0.01)。

(3)模型调整后的R平方=0.548,即该回归模型可解释因变量犯罪率变化的54.8%,模型解释能力略先不足。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式