求不定积分∫√((2-x)/(x+1))dx

 我来答
户如乐9318
2022-08-15 · TA获得超过6661个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:140万
展开全部
√[(2-x) / (x+1)] = (2-x) / √[(2-x)(x+1)] = (2-x) / √(-x^2 + x + 2) = (2-x) / √[-(x - 1/2)^2 + 9/4]
= 2/3 * (2-x) / √[1 - 4/9 * (x - 1/2)^2]
令 2/3 * (x - 1/2) = sin t => x = 3/2 * sin t + 1/2 => dx = 3/2 * cos t dt, t = arcsin[2/3 * (x - 1/2) ]
= arcsin[2x/3 - 1/3], cos t = √(1 - (sin t)^2) = 2/3 * √(-x^2 + x + 2).
原积分 = ∫ 2/3 * (2 - 3/2 * sin t - 1/2) / cos t * 3/2 * cos t dt
= 3/2 * ∫ (1 - sin t) dt
= 3/2 * (t + cos t) + C,C为任意常数.
= 3/2 * (arcsin[2x/3 - 1/3] + 2/3 * √(-x^2 + x + 2) + C
= 3/2 * arcsin[2x/3 - 1/3] + √(-x^2 + x + 2) + C.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式