求解答数学
1个回答
展开全部
过M点作MQ⊥AD,垂足为Q,作MP垂足AB,垂足为P,根据题干条件证明出AP=MF,PM=ME,进而证明△APM≌△FME,即可证明出AM=EF.
解答:
证明:过M点作MQ⊥AD,垂足为Q,作MP垂足AB,垂足为P,
∵四边形ABCD是正方形,
∴四边形MFDQ和四边形PBEM是正方形,四边形APMQ是矩形,
∴AP=QM=DF=MF,PM=PB=ME,
∵在△APM和△FME中,
AP=MF,∠APM=∠FME,PM=ME
∴△APM≌△FME(SAS),
∴AM=EF.
解答:
证明:过M点作MQ⊥AD,垂足为Q,作MP垂足AB,垂足为P,
∵四边形ABCD是正方形,
∴四边形MFDQ和四边形PBEM是正方形,四边形APMQ是矩形,
∴AP=QM=DF=MF,PM=PB=ME,
∵在△APM和△FME中,
AP=MF,∠APM=∠FME,PM=ME
∴△APM≌△FME(SAS),
∴AM=EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |