参数方程问题中。求弦长AB有两个公式|t1-t2||t+t2|我想知道在什么情况下用
|t1+t2|不是弦长公式,|AB|=|t2-t1|这是普遍适用的求弦长公式。
弦长公式指直线与圆锥曲线相交所得弦长d的公式。
抛物线:
1、y²=2px,过焦点直线交抛物线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2
2、y²=-2px,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙x1+x2﹚
3、x²=2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p+y1+y2
4、x²=-2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙y1+y2
扩展资料:
1、圆的参数方程x=a+rcosθy=b+rsinθ(θ∈[0,2π))(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。
2、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。
3、双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数。
4、抛物线的参数方程x=2pt^2y=2ptp表示焦点到准线的距离t为参数。
参考资料来源:
参考资料来源: