线性方程组是否存在非零解?

 我来答
休闲娱乐达人天际
高能答主

2022-12-24 · 致力于休闲娱乐知识的解答,分享娱乐知识。
休闲娱乐达人天际
采纳数:1605 获赞数:396566

向TA提问 私信TA
展开全部

零解就是线性方程组的解中的每个分量全为零,非零解就是线性方程组的解中的内每个分量不全为零容。

1、举例如下:

比如方程组

x1+x2=0

x1-x2=0

就只有零解,但方程组

x1+x2+x3=0

x1+x2-x3=0

除了零解之外,还有无穷的非零解。

扩展资料:

区别:

零解是一定所有齐次方成组的解,但不一定是唯一解。当齐次方成组系数矩阵的秩小于未知数的个数时,该方程组一定有非零解,否则只有零解。

齐次线性方程组只有零解:说明只有唯一解且唯一解为零(因为零解必为其次线性方程组的解),即A的秩r(A)=未知数的个数n <=>A为列满秩矩阵 齐次线性方程组有非零解:即有无穷多解<=>A的秩

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式