展开全部
(1)
af(x)+bf(-1/x)=sinx,1)
令x=-1/x
则有:
af(-1/x)+bf(x)=sin(-1/x),2)
由1),2)联立方程,解得:
f(x)=[asinx+bsin(1/x)]/(a^2-b^2)
(2)
y=arctane^x-ln(e^2x/(e^2x+1))^(1/2)
y'=e^x/(1+e^2x)-1/2*(e^2x+1)/e^2x*[1+2*e^2x/(e^2x+1)^2]
所以:
y'(1)=e/(e^2+1)-(e^2+1)(e^4+4e^2+1)/(2e^2(e^2+1)^2)
(3)
解:
f ' (x)={x[(x-1)(x-2)....(x-100)]}'
=x'*[(x-1)(x-2)....(x-100)]+x*[(x-1)(x-2)....(x-100)]'
=[(x-1)(x-2)....(x-100)]+x*[(x-1)(x-2)....(x-100)]'
f '(0)=[(x-1)(x-2)....(x-100)]+0*[(x-1)(x-2)....(x-100)]'
=[(0-1)(0-2)....(0-100)]
=100!(总共100数相乘为正)
(4)
令x^(1/2)=t,
dx=2tdt
积分:arcsin(x)^(1/2)/x^(1/2)dx
=积分:2tarcsint/tdt
=2积分:arcsintdt
=2[tarcsint-积分:td(arcsint)]
=2[tarcsint-积分:t/(1-t^2)^(1/2)dt]
=2[tarcsint+1/2积分:d(1-t^2)/(1-t^2)^(1/2)]
=2tarcsint+2(1-t^2)^(1/2)+C
=2x^(1/2)arcsin(x)^(1/2)+2(1-x)^(1/2)+C
(C是常数)
af(x)+bf(-1/x)=sinx,1)
令x=-1/x
则有:
af(-1/x)+bf(x)=sin(-1/x),2)
由1),2)联立方程,解得:
f(x)=[asinx+bsin(1/x)]/(a^2-b^2)
(2)
y=arctane^x-ln(e^2x/(e^2x+1))^(1/2)
y'=e^x/(1+e^2x)-1/2*(e^2x+1)/e^2x*[1+2*e^2x/(e^2x+1)^2]
所以:
y'(1)=e/(e^2+1)-(e^2+1)(e^4+4e^2+1)/(2e^2(e^2+1)^2)
(3)
解:
f ' (x)={x[(x-1)(x-2)....(x-100)]}'
=x'*[(x-1)(x-2)....(x-100)]+x*[(x-1)(x-2)....(x-100)]'
=[(x-1)(x-2)....(x-100)]+x*[(x-1)(x-2)....(x-100)]'
f '(0)=[(x-1)(x-2)....(x-100)]+0*[(x-1)(x-2)....(x-100)]'
=[(0-1)(0-2)....(0-100)]
=100!(总共100数相乘为正)
(4)
令x^(1/2)=t,
dx=2tdt
积分:arcsin(x)^(1/2)/x^(1/2)dx
=积分:2tarcsint/tdt
=2积分:arcsintdt
=2[tarcsint-积分:td(arcsint)]
=2[tarcsint-积分:t/(1-t^2)^(1/2)dt]
=2[tarcsint+1/2积分:d(1-t^2)/(1-t^2)^(1/2)]
=2tarcsint+2(1-t^2)^(1/2)+C
=2x^(1/2)arcsin(x)^(1/2)+2(1-x)^(1/2)+C
(C是常数)
展开全部
我解一下第三题,其他题跟雪剑20同.
由定义 f'(0)=lim(x->0)[(f(x)-f(0))/x]
由于f(0)=0,故
f'(0)=lim(x->0)[x(x-1)(x-2)...(x-100)/x]
=(-1)(-2)...(-100)
=(-1)^100 ×100!
=100!
由定义 f'(0)=lim(x->0)[(f(x)-f(0))/x]
由于f(0)=0,故
f'(0)=lim(x->0)[x(x-1)(x-2)...(x-100)/x]
=(-1)(-2)...(-100)
=(-1)^100 ×100!
=100!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
提示:
1、令x=-1/x,得到bf(x)+af(-1/x)=-sin1/x,然后跟原来的式子结合起来变为关于f(x)和f(-1/x)的方程组,解出f(x)
2、就是个求导,按照求导法则,慢慢地求吧;
3、只要你求一下就会发现规律,最后结果为:(-1)(-2)...(-100)=100!
5、令根号x等于t
1、令x=-1/x,得到bf(x)+af(-1/x)=-sin1/x,然后跟原来的式子结合起来变为关于f(x)和f(-1/x)的方程组,解出f(x)
2、就是个求导,按照求导法则,慢慢地求吧;
3、只要你求一下就会发现规律,最后结果为:(-1)(-2)...(-100)=100!
5、令根号x等于t
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询