如何求函数的导数?
基本导数公式(y:原函数;y':导函数):
1、y=c,y'=0(c为常数)。
2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。
4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x。
5、y=sinx,y'=cosx。
6、y=cosx,y'=-sinx。
7、y=tanx,y'=(secx)^2=1/(cosx)^2。
8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y'=1/√(1-x^2)。
10、y=arccosx,y'=-1/√(1-x^2)。
11、y=arctanx,y'=1/(1+x^2)。
12、y=arccotx,y'=-1/(1+x^2)。
13、y=shx,y'=ch x。
14、y=chx,y'=sh x。
15、y=thx,y'=1/(chx)^2。
16、y=arshx,y'=1/√(1+x^2)。
2023-03-15
使用导数定义
使用导数基本公式
复合函数求导时,根据求导的链式法则
隐函数求导时,等式两边同时对x求导
参数方程确定的函数求导时,先求y对t的导数f'(t)=dy/dt,再求x对t的导数g'(t)=dx/dt,所以dy/dx=(dy/dt)/(dx/dt)=f'(t)/g'(t)
分段函数求导时一般会用到导数的定义