展开全部
【答案】:y'=C1e-x+C2ex ;本题考查的知识点为二阶常系数线性齐次微分方程的求解.
将方程变形,化为y"-y=0,
特征方程为r2-1=0;
特征根为r1=-1,r2=1.
因此方程的通解为y=C1e-x+C2ex.
将方程变形,化为y"-y=0,
特征方程为r2-1=0;
特征根为r1=-1,r2=1.
因此方程的通解为y=C1e-x+C2ex.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
0/200