16.已知Sn是等比数列{an}的前n项和,若 S20=15 , S40=75, 则 S60= _?
2个回答
展开全部
S20=15,
S40-S20
=a1[(q^40-1)-(q^20-1)]/(q-1)
=a1q^20(q^20-1)/(q-1)
=S20q^20
S60-S40
=a1[(q^60-1)-(q^40-1)]/(q-1)
=a1q^40(q^20-1)/(q-1)
=S20q^40
由此可见,S20, S40-S20,S60-S40成等比数列,公比为q^20,
S20*(S60-S40)=(S40-S20)^2
15*(S60-75)=(75-15)^2
S60-75=60^2/15
S60=240+75
=315
S40-S20
=a1[(q^40-1)-(q^20-1)]/(q-1)
=a1q^20(q^20-1)/(q-1)
=S20q^20
S60-S40
=a1[(q^60-1)-(q^40-1)]/(q-1)
=a1q^40(q^20-1)/(q-1)
=S20q^40
由此可见,S20, S40-S20,S60-S40成等比数列,公比为q^20,
S20*(S60-S40)=(S40-S20)^2
15*(S60-75)=(75-15)^2
S60-75=60^2/15
S60=240+75
=315
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询