求解幂级数的和函数 10
展开全部
S(x) = ∑<n=0, ∞>x^(2n+1)/(2n+1)! = x + x^3/3! + x^5/5! + ......
S'(x) = ∑<n=0, ∞>x^(2n)/(2n)! = 1 + x^2/2! + x^3/4! + ......
S(x) + S'(x) = ∑<n=0, ∞>x^n/n! = e^x, S(0) = 0
通解 S(x) = e^(-∫dx)[∫e^xe^(∫dx)dx + C]
= e^(-x)[∫e^(2x)dx + C] = e^(-x)[(1/2)e^(2x) + C]
= (1/2)e^x + Ce^(-x),
S(0) = 0 代入, 得 C = -1/2,
S(x) = (1/2)e^x - (1/2)e^(-x) = sinhx
S'(x) = ∑<n=0, ∞>x^(2n)/(2n)! = 1 + x^2/2! + x^3/4! + ......
S(x) + S'(x) = ∑<n=0, ∞>x^n/n! = e^x, S(0) = 0
通解 S(x) = e^(-∫dx)[∫e^xe^(∫dx)dx + C]
= e^(-x)[∫e^(2x)dx + C] = e^(-x)[(1/2)e^(2x) + C]
= (1/2)e^x + Ce^(-x),
S(0) = 0 代入, 得 C = -1/2,
S(x) = (1/2)e^x - (1/2)e^(-x) = sinhx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询