秩等于1的矩阵有什么性质?

 我来答
道阻长
2023-06-27 · TA获得超过6181个赞
知道小有建树答主
回答量:105
采纳率:100%
帮助的人:1.6万
展开全部

特征:

行列成比例,可分解为左列右行乘积且N次幂等于矩阵的迹N-1次方乘矩阵本身。

扩展资料:

一、秩等于1的矩阵的定义:

秩等于1的矩阵是一类特殊的矩阵,它一定可以表示为一个非零列向量(列矩阵)与一个非零行向量(行矩阵)的乘积.根据矩阵乘法的结合律这类矩阵的乘法和方幂运算可以大大简化;这类矩阵的特征值与特征向量具有其特殊性。

二、秩等于1的方阵的乘法运算:

如果A与B均为秩等于1的n阶矩阵,那么存在n维非零列向量a,β,a1,β1,使得A =aβT ,B =a1βT 1,

那么两矩阵的乘积AB=aβT a1βT 1=a(βT a1)BT 1=caβT 1,其中c=βT a1是一个数.至于更多个秩等于1

的n阶矩阵相乘根据矩阵乘法的结合律,类似地有更一般的结论.特别是对于方阵A的乘幂计A2=aβT aβT =a(βT a)βT=laβT=lA,l=βT a是一个数,Ak=lk-1A,k-=12,....

三、秩等于1的方阵的对角化问题:

矩阵A可对角化的充分必要条件是:A有n个线性无关的特征向量。

对于秩等于1的n(n2)阶矩阵A=aT,a,均为n维非零列向量,齐次线性方程组AX=0的基础解系含有n-1个线性无关的解向量a2=(-b2,b1,0,..0)T,a3=()J3,D,),.....,an=-n,0,..,b1)T,它们是A对应于特征值入=0的n-1个线性无关的特征向量.

北京埃德思远电气技术咨询有限公司
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式