函数在该点连续且左导数、右导数都存在
1个回答
展开全部
可导的条件:
1、函数在该点的去心邻域内有定义。
2、函数在该点处的左、右导数都存在。
3、左导数=右导数。这与函数在某点处极限存在是类似的。
函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。函数可导与连续的关系定理:若函数f(x)在x0处可导,则必在点x0处连续。上述定理说明:函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。
在微积分学中,一个实变量函数是可导函数,若其在定义域中每一点导数存在。直观上说,函数图像在其定义域每一点处是相对平滑的,不包含任何尖点、断点。
1、函数在该点的去心邻域内有定义。
2、函数在该点处的左、右导数都存在。
3、左导数=右导数。这与函数在某点处极限存在是类似的。
函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。函数可导与连续的关系定理:若函数f(x)在x0处可导,则必在点x0处连续。上述定理说明:函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。
在微积分学中,一个实变量函数是可导函数,若其在定义域中每一点导数存在。直观上说,函数图像在其定义域每一点处是相对平滑的,不包含任何尖点、断点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询