计算(2+1)(2^2+1)(2^4+1)(2^8+1)
4个回答
展开全部
题目已经提示了呀:“利用平方差公式”
平方差公式是“(a-b)*(a+b)=a^2-b^2”对吧?但是观察题目里的式子,显然少了(a-b)这一项(因为题目里都是加号的项,却唯独没有减号项),因此,我们便来人为地添上一个减号——分子分母同乘(2-1):
原式=(2-1)*[(2+1)*(2^2+1)*(2^4+1)*(2^8+1)+1]/(2-1)
=[(2-1)*(2+1)*(2^2+1)*(2^4+1)*(2^8+1)+(2-1)*1]/1
=(2^2-1)*(2^2+1)*(2^4+1)*(2^8+1)+1
=(2^4-1)*(2^4+1)*(2^8+1)+1
=(2^8-1)*(2^8+1)+1
=2^16-1+1
=65536
注:
看到这个解法,可能你会问,我是怎么“突然”想到乘一项再除一项(2-1),从而导致后面的“连锁反应”的?其实嘛,这题的解法看似微妙,但思路还是有迹可寻的,并非是“一下子”想到的。前面开始这段看上去比较“啰嗦”的话,其实就是一步步循序渐进的解题思路了。
平方差公式是“(a-b)*(a+b)=a^2-b^2”对吧?但是观察题目里的式子,显然少了(a-b)这一项(因为题目里都是加号的项,却唯独没有减号项),因此,我们便来人为地添上一个减号——分子分母同乘(2-1):
原式=(2-1)*[(2+1)*(2^2+1)*(2^4+1)*(2^8+1)+1]/(2-1)
=[(2-1)*(2+1)*(2^2+1)*(2^4+1)*(2^8+1)+(2-1)*1]/1
=(2^2-1)*(2^2+1)*(2^4+1)*(2^8+1)+1
=(2^4-1)*(2^4+1)*(2^8+1)+1
=(2^8-1)*(2^8+1)+1
=2^16-1+1
=65536
注:
看到这个解法,可能你会问,我是怎么“突然”想到乘一项再除一项(2-1),从而导致后面的“连锁反应”的?其实嘛,这题的解法看似微妙,但思路还是有迹可寻的,并非是“一下子”想到的。前面开始这段看上去比较“啰嗦”的话,其实就是一步步循序渐进的解题思路了。
黄先生
2024-12-27 广告
2024-12-27 广告
北京蓝宝、广州宏控、广州迈拓维矩、广州快捷等。在性价比方面,选择广州迈拓维矩矩阵切换器,性价比较高,6道测试工序,质量有保证。有以下优点:1.所有产品都是模块化设计,方便维护。2.矩阵都有输出长线驱动的设计,即插即用,不需要设置。3.软硬件...
点击进入详情页
本回答由黄先生提供
展开全部
(2+1)(2^2+1)(2^4+1)(2^8+1)
=1*(2+1)(2^2+1)(2^4+1)(2^8+1)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)
=(2^4-1)(2^4+1)(2^8+1)
=(2^8-1)(2^8+1)
=2^16-1
=1*(2+1)(2^2+1)(2^4+1)(2^8+1)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)
=(2^4-1)(2^4+1)(2^8+1)
=(2^8-1)(2^8+1)
=2^16-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
19890如果对就给分啊!不给的话…呵呵
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-03-13
展开全部
赞同楼主 good
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询