
什么是共轭?
最近在看线性代数,里面提到一种共轭矩阵,能给解释下共轭及共轭矩阵,并给举个例子么?多谢了!例子可以做成图片传上来。...
最近在看线性代数,里面提到一种共轭矩阵,能给解释下共轭及共轭矩阵,并给举个例子么?多谢了!例子可以做成图片传上来。
展开
2个回答
展开全部
共轭矩阵又称Hermite阵。Hermite阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。
对于
<math>A = \{ a_{i,j} \} \in C^{n \times n} </math>
有:
<math>a_{i,j} = \overline{a_{j,i}}</math>,其中<math>\overline{(\cdot)}</math>为共轭算符。
记做:
<math> A = A^H \quad </math>
例如:
<math>\begin{bmatrix}
3&2+i\\ 2-i&1 \end{bmatrix}</math>
就是一个Hermite阵。
显然,Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是Hermite阵。也就是说,实对称阵是Hermite阵的特例。
[编辑本段]性质
若A 和B 是Hermite阵,那么它们的和A+B 也是Hermite阵;而只有在A 和B满足交换性(即AB = BA)时,它们的积才是Hermite阵。
可逆的Hermite阵A 的逆矩阵A-1仍然是Hermite阵。
如果A是Hermite阵,对于正整数n,An是Hermite阵.
方阵C 与其共轭转置的和<math>C + C^*</math>是Hermite阵.
方阵C 与其共轭转置的差<math>C - C^*</math>是skew-Hermite阵。
任意方阵C 都可以用一个Hermite阵A 与一个skew-Hermite阵B的和表示:
<math>C = A+B \quad\mbox{with}\quad A = \frac{1}{2}(C + C^*) \quad\mbox{and}\quad B = \frac{1}{2}(C - C^*).</math>
Hermite阵是正规阵,因此Hermite阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着Hermite阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。
n阶Hermite方阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。
如果Hermite阵的特征值都是正数,那么这个矩阵是正定阵,若它们是非负的,则这个矩阵是半正定阵。
[编辑本段]Hermite序列
Hermite序列(抑或Hermite向量)指满足下列条件的序列ak(其中k = 0, 1, …, n):
<math> \Im(a_0) = 0 \quad \mbox{and} \quad a_k = \overline{a_{n-k}} \quad \mbox{for } k=1,2,\dots,n. </math>
若n 是偶数,则an/2是实数。
实数序列的离散傅里叶变换是Hermite序列。反之,一个Hermite序列的逆离散傅里叶变换是实序列。
对于
<math>A = \{ a_{i,j} \} \in C^{n \times n} </math>
有:
<math>a_{i,j} = \overline{a_{j,i}}</math>,其中<math>\overline{(\cdot)}</math>为共轭算符。
记做:
<math> A = A^H \quad </math>
例如:
<math>\begin{bmatrix}
3&2+i\\ 2-i&1 \end{bmatrix}</math>
就是一个Hermite阵。
显然,Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是Hermite阵。也就是说,实对称阵是Hermite阵的特例。
[编辑本段]性质
若A 和B 是Hermite阵,那么它们的和A+B 也是Hermite阵;而只有在A 和B满足交换性(即AB = BA)时,它们的积才是Hermite阵。
可逆的Hermite阵A 的逆矩阵A-1仍然是Hermite阵。
如果A是Hermite阵,对于正整数n,An是Hermite阵.
方阵C 与其共轭转置的和<math>C + C^*</math>是Hermite阵.
方阵C 与其共轭转置的差<math>C - C^*</math>是skew-Hermite阵。
任意方阵C 都可以用一个Hermite阵A 与一个skew-Hermite阵B的和表示:
<math>C = A+B \quad\mbox{with}\quad A = \frac{1}{2}(C + C^*) \quad\mbox{and}\quad B = \frac{1}{2}(C - C^*).</math>
Hermite阵是正规阵,因此Hermite阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着Hermite阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。
n阶Hermite方阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。
如果Hermite阵的特征值都是正数,那么这个矩阵是正定阵,若它们是非负的,则这个矩阵是半正定阵。
[编辑本段]Hermite序列
Hermite序列(抑或Hermite向量)指满足下列条件的序列ak(其中k = 0, 1, …, n):
<math> \Im(a_0) = 0 \quad \mbox{and} \quad a_k = \overline{a_{n-k}} \quad \mbox{for } k=1,2,\dots,n. </math>
若n 是偶数,则an/2是实数。
实数序列的离散傅里叶变换是Hermite序列。反之,一个Hermite序列的逆离散傅里叶变换是实序列。

2025-08-14 广告
联系电话:19970352726;上海炙云新能源科技有限公司及分公司苏州湛云科技有限公司是国家高新技术企业,也是苏州“姑苏领军人才企业” 主要方向为电池全生命周期的检测设备及服务闭环生态链品牌,主要业务为电池全生命周期的智能检测和评价,是一...
点击进入详情页
本回答由湛云科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询