找规律题的方法
找规律题有什么方法啊??我每次遇到找规律的题就无从下手哪位高手推荐下方法..是方法..不是具体题目谢谢咯~...
找规律题有什么方法啊??
我每次遇到找规律的题就无从下手
哪位高手推荐下方法..
是方法..不是具体题目
谢谢咯~ 展开
我每次遇到找规律的题就无从下手
哪位高手推荐下方法..
是方法..不是具体题目
谢谢咯~ 展开
展开全部
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是
100 ,第n个数是 n
。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号:
1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是
-1,第100项是 —1
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。
例如:1,9,25,49,(81),(121),的第n项为(
),
1,2,3,4,5.。。。。。。,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
(三)看例题:
A:
2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18
答案与3有关且是n的3次幂,即:
n +1
B:2、4、8、16.......增幅是2、4、8..
.....答案与2的乘方有关即:
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n个数为
。再看原数列是同时减2得到的新数列,则在
的基础上加2,得到原数列第n项
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例 :
4,16,36,64,?,144,196,…
?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n项即n
,原数列是同除以4得到的新数列,所以求出新数列n的公式后再乘以4即,4
n ,则求出第一百个数为4*100 =40000
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是
100 ,第n个数是 n
。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号:
1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是
-1,第100项是 —1
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。
例如:1,9,25,49,(81),(121),的第n项为(
),
1,2,3,4,5.。。。。。。,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
(三)看例题:
A:
2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18
答案与3有关且是n的3次幂,即:
n +1
B:2、4、8、16.......增幅是2、4、8..
.....答案与2的乘方有关即:
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n个数为
。再看原数列是同时减2得到的新数列,则在
的基础上加2,得到原数列第n项
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例 :
4,16,36,64,?,144,196,…
?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n项即n
,原数列是同除以4得到的新数列,所以求出新数列n的公式后再乘以4即,4
n ,则求出第一百个数为4*100 =40000
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
展开全部
可用以下几种方法:
斐波那契数列法:每个数都是前两个数的和
等差数列法:每两个数之间的差都相等
“跳格子”法:可以间隔着看,看隔着的数之间有什么关系,如14,1,12,3,10,5,第奇数项成等差数列,第偶数项也成等差数列,于是接下来应该填8
递增法:看每两个数之间的差距是不是成等差数列,如1,4,8,13,19,每两个数之间的差分别是3,4,5,6,于是接下来差距应是7,即26
分解法:把每个数进行分解,看看有什么规律。如1 4 9 16( )
2 6 12 20( )
3 15 35 63( ),
分解后得1×1 2×2 3×3 4×4
1×2 2×3 3×4 4×5
1×3 3×5 5×7 7×9,
也就是第一行的第n个数是n^2,第二行的第n个数是n×(n+1),第三行的第n个数是第n个正奇数×(n+2),由此可得答案是25,30,99
斐波那契数列法:每个数都是前两个数的和
等差数列法:每两个数之间的差都相等
“跳格子”法:可以间隔着看,看隔着的数之间有什么关系,如14,1,12,3,10,5,第奇数项成等差数列,第偶数项也成等差数列,于是接下来应该填8
递增法:看每两个数之间的差距是不是成等差数列,如1,4,8,13,19,每两个数之间的差分别是3,4,5,6,于是接下来差距应是7,即26
分解法:把每个数进行分解,看看有什么规律。如1 4 9 16( )
2 6 12 20( )
3 15 35 63( ),
分解后得1×1 2×2 3×3 4×4
1×2 2×3 3×4 4×5
1×3 3×5 5×7 7×9,
也就是第一行的第n个数是n^2,第二行的第n个数是n×(n+1),第三行的第n个数是第n个正奇数×(n+2),由此可得答案是25,30,99
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
总结规律,熟悉一些常见的题目,
一般是先观察,有什么特点,然后依次排查几种常用的方法,比如差值,相邻的三项有什么运算关系,如果数变化剧烈,可以考虑平方、立方,还要熟悉常用的一些平方值和立方值。多做一些就会增强自信和经验。
一般是先观察,有什么特点,然后依次排查几种常用的方法,比如差值,相邻的三项有什么运算关系,如果数变化剧烈,可以考虑平方、立方,还要熟悉常用的一些平方值和立方值。多做一些就会增强自信和经验。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是
100 ,第n个数是 n
。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号:
1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是
-1,第100项是 —1
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。
例如:1,9,25,49,(81),(121),的第n项为(
),
1,2,3,4,5.。。。。。。,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是
100 ,第n个数是 n
。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号:
1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是
-1,第100项是 —1
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。
例如:1,9,25,49,(81),(121),的第n项为(
),
1,2,3,4,5.。。。。。。,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
记住一些常用的数表示方法:例如,
连续三个整数(n+2 n+1 n; n+1 n n-1)
连续三个偶数(2n 2n+2 2n+4; 2n-2 2n 2n+2)
连续三个奇数(2n-1 2n+1 2n+3)
连续四个奇数(2n-3 2n-1 2n+1 2n+3)
连续三个整数(n+2 n+1 n; n+1 n n-1)
连续三个偶数(2n 2n+2 2n+4; 2n-2 2n 2n+2)
连续三个奇数(2n-1 2n+1 2n+3)
连续四个奇数(2n-3 2n-1 2n+1 2n+3)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询