化学专业英语论文翻译翻译
Manyoftheknownicephasesexhibitaprotonorderingtransition,forexamplethetransitionfrompr...
Many of the known ice phases exhibit a proton ordering
transition,for example the transition from proton disordered
hexagonal ice(Ih)to proton ordered ice XI.1 Most recently,two
new proton ordered ice phases(XIII and XIV)have been reported2
relating to ice V and XII,respectively.Preparation of several ice
phases is not straightforward,which explains why until recently,
only one new ice phase had been discovered in the last 20 years.3
In particular,ordered forms of ice can be difficult to isolate within
the laboratory because of kinetic barriers to molecular rotation that
are important at low temperatures.Computer simulation offers an
adjunct methodology in which the effects of pressure,temperature,
and configuration can notionally be controlled quite precisely,to
permit systematic mapping of the phase diagram.However,the
verity of any simulation method hinges upon its ability to reproduce
disparate state points on the phase diagram.As a challenge to theory,
we recently undertook a blind test to predict the proton ordered
form of ice XII termed ice XIV.
Although each ice oxygen atom must have tetrahedral coordina-
tion(in a perfect lattice),the hydrogen atoms may be disordered.
The arrangements of protons within an ice structure are determined
by the Bernal-Fowler ice rules4 which stipulate that(1)there must
be two hydrogen atoms adjacent to each oxygen and(2)there must
be only one hydrogen per hydrogen bond.Pauling5 showed that
for any ice phase there are approximately(3/2)N ways in which the
hydrogen atoms can be arranged and suggested that all possible
structures of a given phase are degenerate.However,the existence
of proton ordered phases invalidates this postulate.The proton
ordered phases have distinct properties from their disordered parent
phases;for example,ice VII can transform to proton ordered ice
VIII with an associated change in the lattice parameters and density. 展开
transition,for example the transition from proton disordered
hexagonal ice(Ih)to proton ordered ice XI.1 Most recently,two
new proton ordered ice phases(XIII and XIV)have been reported2
relating to ice V and XII,respectively.Preparation of several ice
phases is not straightforward,which explains why until recently,
only one new ice phase had been discovered in the last 20 years.3
In particular,ordered forms of ice can be difficult to isolate within
the laboratory because of kinetic barriers to molecular rotation that
are important at low temperatures.Computer simulation offers an
adjunct methodology in which the effects of pressure,temperature,
and configuration can notionally be controlled quite precisely,to
permit systematic mapping of the phase diagram.However,the
verity of any simulation method hinges upon its ability to reproduce
disparate state points on the phase diagram.As a challenge to theory,
we recently undertook a blind test to predict the proton ordered
form of ice XII termed ice XIV.
Although each ice oxygen atom must have tetrahedral coordina-
tion(in a perfect lattice),the hydrogen atoms may be disordered.
The arrangements of protons within an ice structure are determined
by the Bernal-Fowler ice rules4 which stipulate that(1)there must
be two hydrogen atoms adjacent to each oxygen and(2)there must
be only one hydrogen per hydrogen bond.Pauling5 showed that
for any ice phase there are approximately(3/2)N ways in which the
hydrogen atoms can be arranged and suggested that all possible
structures of a given phase are degenerate.However,the existence
of proton ordered phases invalidates this postulate.The proton
ordered phases have distinct properties from their disordered parent
phases;for example,ice VII can transform to proton ordered ice
VIII with an associated change in the lattice parameters and density. 展开
2个回答
展开全部
许多已知的冰阶段表现出了质子订购
转型,例如从质子无序
六角冰(星期四)以质子下令冰十一.1最近,两个
新质子命令冰阶段(十三和十四)已reported2
有关冰第五和第十二, respectively.Preparation若干冰
阶段并不简单,这解释了为什么直到最近,
只有一个新的冰阶段已经发现在过去20 years.3
特别是,排列形式的冰可能难以孤立内
该实验室因为动力学障碍分子轮换
是重要的低temperatures.Computer仿真提供了一个
辅助方法,在其中的影响,压力,温度,
和配置可以名义上控制十分精确,以
允许系统测绘阶段diagram.However的
Verity的任何模拟方法取决于其生育能力
不同的国家分相diagram.As挑战理论,
我们最近进行了一项双盲试验预测质子有序
形式的冰第十二称为冰十四。
虽然每个冰氧原子必须四面体协调员
化(在一个完美的网格) ,氢原子可能是无序的。
安排的质子在一个冰结构的确定
由贝尔纳福勒冰rules4其中规定: ( 1 )必须有
两个氢原子毗邻每个氧气和( 2 )必须有
只有一个氢每表明,氢bond.Pauling5
任何冰阶段大约有( 3 / 2 )不适用何种方式
氢原子可安排,并建议所有可能的
结构的某一阶段是degenerate.However ,存在
质子命令无效这一阶段postulate.The质子
命令阶段有不同的特性从无序母公司
阶段,例如,冰七可以转化为质子下令冰
八的相关变化,晶胞参数和密度。
转型,例如从质子无序
六角冰(星期四)以质子下令冰十一.1最近,两个
新质子命令冰阶段(十三和十四)已reported2
有关冰第五和第十二, respectively.Preparation若干冰
阶段并不简单,这解释了为什么直到最近,
只有一个新的冰阶段已经发现在过去20 years.3
特别是,排列形式的冰可能难以孤立内
该实验室因为动力学障碍分子轮换
是重要的低temperatures.Computer仿真提供了一个
辅助方法,在其中的影响,压力,温度,
和配置可以名义上控制十分精确,以
允许系统测绘阶段diagram.However的
Verity的任何模拟方法取决于其生育能力
不同的国家分相diagram.As挑战理论,
我们最近进行了一项双盲试验预测质子有序
形式的冰第十二称为冰十四。
虽然每个冰氧原子必须四面体协调员
化(在一个完美的网格) ,氢原子可能是无序的。
安排的质子在一个冰结构的确定
由贝尔纳福勒冰rules4其中规定: ( 1 )必须有
两个氢原子毗邻每个氧气和( 2 )必须有
只有一个氢每表明,氢bond.Pauling5
任何冰阶段大约有( 3 / 2 )不适用何种方式
氢原子可安排,并建议所有可能的
结构的某一阶段是degenerate.However ,存在
质子命令无效这一阶段postulate.The质子
命令阶段有不同的特性从无序母公司
阶段,例如,冰七可以转化为质子下令冰
八的相关变化,晶胞参数和密度。
2017-02-22
展开全部
impossible between members of different species because genitals of males and females are structurally incompatible or because molecules on the surfaces of sperm and egg fail to bind. A final type of prezygotic mechanism is temporal isolation, in which time-related environmental cues that trigger reproductive processes are different for related species.
有时,产生前合子隔离的差异涉及了隔离机制。即,由于生殖器结构不匹配或精卵分子表面不结合而使不同种群成员间不能自然结合。最后一类前合子机制是暂时隔离,与时间有关的环境因素触发了相关物种的不同繁殖过程。
有时,产生前合子隔离的差异涉及了隔离机制。即,由于生殖器结构不匹配或精卵分子表面不结合而使不同种群成员间不能自然结合。最后一类前合子机制是暂时隔离,与时间有关的环境因素触发了相关物种的不同繁殖过程。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询