
高一数学题,高手快来啊!!!!!!
求值Cos[π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)...
求值Cos[π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]
谢谢了! 展开
谢谢了! 展开
2个回答
展开全部
Cos[π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]
=sin[π/(2^(n+1)+1)]*Cos[π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
=sin[2π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/2sin[π/(2^(n+1)+1)]
=sin[4π/(2^(n+1)+1)]Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/2^2sin[π/(2^(n+1)+1)]
=……
=sin[2^nπ/(2^(n+1)+1)]cos[2^nπ/(2^(n+1)+1)]/2^nsin[π/(2^(n+1)+1)]
=sin[2^(n+1)π/(2^(n+1)+1)]/2^(n+1)sin[π/(2^(n+1)+1)]
=sin[π-π/(2^(n+1)+1)]/2^(n+1)sin[π/(2^(n+1)+1)]
=sin[π/(2^(n+1)+1)]/2^(n+1)sin[π/(2^(n+1)+1)]
=1/2^(n+1).
=sin[π/(2^(n+1)+1)]*Cos[π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
=sin[2π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/2sin[π/(2^(n+1)+1)]
=sin[4π/(2^(n+1)+1)]Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/2^2sin[π/(2^(n+1)+1)]
=……
=sin[2^nπ/(2^(n+1)+1)]cos[2^nπ/(2^(n+1)+1)]/2^nsin[π/(2^(n+1)+1)]
=sin[2^(n+1)π/(2^(n+1)+1)]/2^(n+1)sin[π/(2^(n+1)+1)]
=sin[π-π/(2^(n+1)+1)]/2^(n+1)sin[π/(2^(n+1)+1)]
=sin[π/(2^(n+1)+1)]/2^(n+1)sin[π/(2^(n+1)+1)]
=1/2^(n+1).
展开全部
Cos[π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]
乘以sin[π/(2^(n+1)+1)],再除以sin[π/(2^(n+1)+1)]
=sin[π/(2^(n+1)+1)]*Cos[π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
=1/2sin[2π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
一直使用而被角公式结合下去
=1/2^nsin[2^(n+1)π/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
=[1/2^nsin[π-(2^(n+1)π/(2^(n+1)π+1)]/sin[π/(2^(n+1)+1)]
=[1/2^n*sin[π/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
=1/2^n
乘以sin[π/(2^(n+1)+1)],再除以sin[π/(2^(n+1)+1)]
=sin[π/(2^(n+1)+1)]*Cos[π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
=1/2sin[2π/(2^(n+1)+1)]*Cos[2π/(2^(n+1)+1)]*Cos[4π/(2^(n+1)+1)].......*cos[2^nπ/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
一直使用而被角公式结合下去
=1/2^nsin[2^(n+1)π/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
=[1/2^nsin[π-(2^(n+1)π/(2^(n+1)π+1)]/sin[π/(2^(n+1)+1)]
=[1/2^n*sin[π/(2^(n+1)+1)]/sin[π/(2^(n+1)+1)]
=1/2^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询