用数学归纳法证明:1/n+1/(n+1)+1/(n+2)+…+1/n^2大于1(n大于1) 20

n=k+1后怎么算,不胜感激题目中没说n是整数... n=k+1后怎么算,不胜感激
题目中没说n是整数
展开
雪剑20
2009-06-07 · TA获得超过2.6万个赞
知道大有可为答主
回答量:3962
采纳率:0%
帮助的人:6665万
展开全部
1/n+1/(n+1)+1/(n+2)+…+1/n^2>1(n>1且n是整数)
证明:
(1)当n=2,
1/2+1/3+1/4=13/12>1成立
(2)假设当n=k时,
1/n+1/(n+1)+...+1/n^2>1
所以:
1/n+1/(n+1)+...+1/k^2>1
所以当n=k+1时,有:
1/n+1/(n+1)+...+1/k^2+1/(k^2+1)+1/(k^2+2)+...+1/(k^2+2k+1)
>1+1/(k^2+1)+1/(k^2+2)+1/(k^2+2k+1)
因为:
1/(k^2+1)+1/(k^2+2)+...+1/(k^2+2k+1)>0
所以:
1/n+1/(n+1)+...+1/k^2+1/(k^2+1)+1/(k^2+2)+...+1/(k^2+2k+1)
>1+0
=1
所以当n=k+1原式也成立

综上,有:
1/n+1/(n+1)+1/(n+2)+…+1/n^2>1(n>1且n是整数)

没说是整数就不能用数学归纳法
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式