一道高中数学求最值问题
题目在百度空间:http://hi.baidu.com/gtxy2003/blog/item/e847fbdb1e00406fd1164ef7.html...
题目在百度空间:
http://hi.baidu.com/gtxy2003/blog/item/e847fbdb1e00406fd1164ef7.html 展开
http://hi.baidu.com/gtxy2003/blog/item/e847fbdb1e00406fd1164ef7.html 展开
1个回答
展开全部
第一问用几何意义来做
因为X2+Y2=1,(X,Y)圆心为原点,半径为1的圆上的点
所以第一问即求(X,Y)与(1,2)的斜率
画图。。。。发现过(1,2)的圆的一条切线的斜率最大
得斜率最大值=3/4
第二问用三角函数做
因为X2+Y2=1,所以设X=SINX Y=COSX
SINX/3+COSX/4=根号里(1/3的平方+1/4的平方)sin(x+a)
因为sin(x+a) 的最大值=1,所以SINX/3+COSX/4的最大值=1/3的平方+1/4的平方=5/12
因为X2+Y2=1,(X,Y)圆心为原点,半径为1的圆上的点
所以第一问即求(X,Y)与(1,2)的斜率
画图。。。。发现过(1,2)的圆的一条切线的斜率最大
得斜率最大值=3/4
第二问用三角函数做
因为X2+Y2=1,所以设X=SINX Y=COSX
SINX/3+COSX/4=根号里(1/3的平方+1/4的平方)sin(x+a)
因为sin(x+a) 的最大值=1,所以SINX/3+COSX/4的最大值=1/3的平方+1/4的平方=5/12
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询