你能找到三个整数a,b,c,使得(a+b+c)(a-b-c)(a-b+c)(b+c-a)=3388成立吗?
你能找到三个整数a,b,c,使得(a+b+c)(a-b-c)(a-b+c)(b+c-a)=3388成立吗?如果能,请列举一例,如果不能,请说明理由...
你能找到三个整数a,b,c,使得(a+b+c)(a-b-c)(a-b+c)(b+c-a)=3388成立吗?如果能,请列举一例,如果不能,请说明理由
展开
展开全部
解:假设存在整数a、b、c,使得(a+b+c)(a-b+c)(a+b-c)(b+c-a)=3388成立。因为3388是偶数,所以左边四个因式中至少有一个是偶数,不妨设a+b+c为偶数,则
a-b+c=(a+b+c)-2b为偶数,
a+b-c=(a+b+c)-2c为偶数,
b+c-a=(a+b+c)-2a为偶数。
所以(a+b+c)(a-b+c)(a+b-c)(b+c-a)能被16整除,而3388不能被16整除,得出矛盾。故不存在三个整数a,b,c,满足关系式(a+b+c)(a-b+c)(a+b-c)(b+c-a)=3388。
a-b+c=(a+b+c)-2b为偶数,
a+b-c=(a+b+c)-2c为偶数,
b+c-a=(a+b+c)-2a为偶数。
所以(a+b+c)(a-b+c)(a+b-c)(b+c-a)能被16整除,而3388不能被16整除,得出矛盾。故不存在三个整数a,b,c,满足关系式(a+b+c)(a-b+c)(a+b-c)(b+c-a)=3388。
展开全部
无论a、b、c的奇偶性是什么,(a+b+c)、(a-b+c)、(a+b-c)、(b+c-a)这四个的奇偶性均相同,同奇或同偶,又3388=2×2×7×11×11,无论如何搭配,组成四个数的乘积,都不可能同奇或同偶。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
自己编个程序去算吧。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询