如图,已知:点D是△ABC的边BC上一动点,且AB=AC,DA=DE,∠BAC=∠ADE=α.
(1)如图1,当α=60°时,∠BCE=____;(2)如图2,当α=90°时,试判断∠BCE的度数是否发生改变?若变化,请指出其变化范围;若不变化,请求出其值,并给出证...
(1)如图1,当α=60°时,∠BCE=____;
(2)如图2,当α=90°时,试判断∠BCE的度数是否发生改变?若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;
(3)如图3,当α=120°时,则∠BCE=____. 展开
(2)如图2,当α=90°时,试判断∠BCE的度数是否发生改变?若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;
(3)如图3,当α=120°时,则∠BCE=____. 展开
展开全部
解:(1)如图,且AB=AC,DA=DE,∠BAC=∠ADE=60°
∴△ABC和△ADE是等边三角形,
∴∠BAD+∠DAC=∠EAC+∠DAC=60°,AD=AE,∠BCA=60°,
即,∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠B=∠ACE=60°,
∴∠BCE=∠BCA+∠ACE=120°;
(2)如图,过D作DF⊥BC,交CA延长线于F,
∵∠BAC=∠FDC=90°,
∴∠ACB=∠DFC=45°,
∴在直角△FDC中:DF=DC,
又∵∠FDA+∠ADC=∠CDE+∠ADC=90°,
∴∠FDA=∠CDE
又∵DA=DE,
∴△FDA≌△CDE,
∴∠DFA=∠DCE,
∴∠DCE=45°;
同理,过D作DF⊥BC,AC于点F时,∠DFA=∠DCE=135°.
综上所述,∠DCE=45°或∠DCE=135°;
(3)如图,延长CA到点F,使AF=AC,连接FD.同理当∠FDC=120°时,
∵∠ADE=∠BAC=120°,
∴∠FDA+∠ADC=∠CDE+∠ADC,∠ACB=30°,
∴∠FDA=∠CDE,∠DFC=∠ACB=30°,DF=DC,
又AD=DE,
∴△FDA≌△CDE,
∴∠DCE=∠DFA=30°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询