在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足为D、E,F为BC中点,BE与DF、DC分别交与G、H,且∠ABE=∠CBE

(1)求证:BH=AC。(2)求证:BG^2-GE^2=EA^2... (1)求证:BH=AC。(2)求证:BG^2-GE^2=EA^2 展开
攫戾执猛王宇迪
2014-03-02
知道答主
回答量:6
采纳率:0%
帮助的人:7.5万
展开全部
证明:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,
∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,
∴DB=DC,∠ABE=∠DCA,
∵在△DBH和△DCA中,
∴△DBH≌△DCA,
∴BH=AC;
(2)连接CG,
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴∠AEB=∠CEB,
∵在△ABE和△CBE中,
∴△ABE≌△CBE,
∴EC=EA,
在Rt△CGE中,由勾股定理得:
BG2﹣GE2=EA2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式