在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足为D、E,F为BC中点,BE与DF、DC分别交与G、H,且∠ABE=∠CBE
1个回答
展开全部
证明:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,
∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,
∴DB=DC,∠ABE=∠DCA,
∵在△DBH和△DCA中,
∴△DBH≌△DCA,
∴BH=AC;
(2)连接CG,
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴∠AEB=∠CEB,
∵在△ABE和△CBE中,
∴△ABE≌△CBE,
∴EC=EA,
在Rt△CGE中,由勾股定理得:
BG2﹣GE2=EA2.
∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,
∴DB=DC,∠ABE=∠DCA,
∵在△DBH和△DCA中,
∴△DBH≌△DCA,
∴BH=AC;
(2)连接CG,
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴∠AEB=∠CEB,
∵在△ABE和△CBE中,
∴△ABE≌△CBE,
∴EC=EA,
在Rt△CGE中,由勾股定理得:
BG2﹣GE2=EA2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询