如图所示,在△ABC中∠ACB,AC=BC,D为△ABC形外一点且AD=BD,DE丄AC交CA的延长线于E,求证:DE=AE+BC

薛蛮子22
2014-02-25 · TA获得超过2468个赞
知道小有建树答主
回答量:411
采纳率:0%
帮助的人:147万
展开全部
证明:
过D作DF⊥CB交CB的延长线于F
∵AC=BC ∠ACB=90°
∴∠ABC=∠CAB=45°
∴∠ABF=∠BAE
∵AD=BD ∴∠DBA=∠DAB
∴∠ABF-∠DBA=∠BAE-∠DAB
∴∠DBF=∠DAE
∵∠E=∠F=90° ∴三角形BDF全等于三角形ADE
∴DE=DF
∵∠C=∠F=∠E=90°
∴四边形FCED为矩形∴DF=CE
∴DE=CE
∵CE=AC+AE
AC=BC
∴DE=CE=BC+AE
很高兴为您解答,还望您及时采纳我哟,谢谢
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式