高一数学,急!
2个回答
展开全部
8cos(2a+b)+5cosb=0==>8cos[(a+b)+a]+5cos[(a+b)-a]=0 .............(1)
用两角差的余弦和差公式,将上面的cos[(a+b)+a]和cos[(a+b)-a]展开
cos[(a+b)-a]=cos(a+b)cosa+sin(a+b)sina
cos[(a+b)+a]=cos(a+b)cosa-sin(a+b)sina
将以上两式带入(1)中,可得
13cos(a+b)cosa=3sin(a+b)sina
两边同除以cos(a+b)cosa
所以tan(a+b)tana=13/3
用两角差的余弦和差公式,将上面的cos[(a+b)+a]和cos[(a+b)-a]展开
cos[(a+b)-a]=cos(a+b)cosa+sin(a+b)sina
cos[(a+b)+a]=cos(a+b)cosa-sin(a+b)sina
将以上两式带入(1)中,可得
13cos(a+b)cosa=3sin(a+b)sina
两边同除以cos(a+b)cosa
所以tan(a+b)tana=13/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询