怎么求函数的最值,单调性,区间
如:已知函数f(x)=e^|x-a|(a为常数),若f(x)在区间[1,正无穷大]上是增函数,则a的取值范围...
如:已知函数f(x)=e^|x-a|(a为常数),若f(x)在区间[1,正无穷大]上是增函数,则a的取值范围
展开
展开全部
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)和f(-x)=f(x),(x∈D,且D关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义。
④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图形,偶函数的图像关于y轴的轴对称图形。
f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y)→(-x,-y)
f(x)为偶函数<=>f(x)的图像关于Y轴对称 点(x,y)→(-x,y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.证明方法(1)定义法:函数定义域是否关于原点对称
(2)图像法: f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y)→(-x,-y)
f(x)为偶函数<=>f(x)的图像关于Y轴对称 点(x,y)→(-x,y)3.若定义域就是让函数有意义
满意请采纳。
满意请采纳。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询