(1)已知:如图1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB

(1)已知:如图1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,猜想:∠PAC+∠PBC=°(直接... (1)已知:如图1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,猜想:∠PAC+∠PBC=°(直接写出结论,不需证明).(2)已知:如图2,Rt△ABC中,∠ACB=90°,∠BAC≠45°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,(1)中结论是否成立,若成立,请证明;若不成立请说明理由. 展开
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励10(财富值+成长值)+提问者悬赏20(财富值+成长值)
活宝请问儿童
推荐于2016-11-26
知道答主
回答量:1
采纳率:0%
帮助的人:2.2万
展开全部
(1)根据三角形和四边形的内角和定理可猜想:∠PAC+∠PBC=180°;
(2)连接CE,如能够证明CE=PE=EB=AE,即可得△PAE与△PBE为等腰直角三角形,则∠APB=45°+45°=90°,再由四边形的内角和即可得证;由已知易证AE=EB=EC,主要是证明PE=EC=AE,可由∠EAC=∠ECA,则∠DCE=∠ECA-∠DCA=∠EAC-45°,又∵∠DAC=180°-∠ADC-45°=135°-∠PDE,
∴∠DCE=135°-∠PDE-45°=90°-∠PDE=∠DPE,即可得证.
(1)猜想:∠PAC+∠PBC=180°;

(2)结论:依然成立.
证明:连接CE.
∵E为AB中点,
∴AE=EB=EC,
∴∠EAC=∠ECA,
∴∠DCE=∠ECA-∠DCA=∠EAC-45°,
又∵∠DAC=180°-∠ADC-45°=135°-∠PDE,
∴∠DCE=135°-∠PDE-45°=90°-∠PDE=∠DPE,
∴PE=EC=AE,
∴△PAE与△PBE为等腰直角三角形,∠APB=90°,
∴∠PAC+∠PBC=360°-∠APB-∠ACB=360°-90°-90°=180°.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式