已知AB是半圆O的直径,AB=16,P点是AB上的一动点(不与A、B重合),PQ⊥AB,垂足为P,交半圆O于Q;PB是半

已知AB是半圆O的直径,AB=16,P点是AB上的一动点(不与A、B重合),PQ⊥AB,垂足为P,交半圆O于Q;PB是半圆O1的直径,⊙O2与半圆O、半圆O1及PQ都相切... 已知AB是半圆O的直径,AB=16,P点是AB上的一动点(不与A、B重合),PQ⊥AB,垂足为P,交半圆O于Q;PB是半圆O1的直径,⊙O2与半圆O、半圆O1及PQ都相切,切点分别为M、N、C.(1)当P点与O点重合时(如图1),求⊙O2的半径r;(2)当P点在AB上移动时(如图2),设PQ=x,⊙O2的半径r.求r与x的函数关系式,并求出r取值范围. 展开
 我来答
泰山冠军5589
推荐于2016-08-17 · TA获得超过222个赞
知道答主
回答量:100
采纳率:0%
帮助的人:122万
展开全部
解:(1)连接OO2、O1O2、O2C,作O2D⊥AB于D.(1分)
∵⊙O2与⊙O、⊙O1、PQ相切,
∴OO2=8-r,(2分)
O1O2=4+r.(3分)
∵四边形ODO2C是矩形,
∴OD=r,O1D=4-r(4分)
根据勾股定理得:OO22-OD2=O2D2=O1O22-O1D2
即:(8-r)2-r2=(r+4)2-(4-r)2,(5分)
∴r=2;(6分)

(2)∵AB是⊙O直径,PQ⊥AB
∴PQ2=AP?PB
设⊙O1半径是a,
则x2=2a(16-2a)=4(8a-a2).
连接O1O2、OO2,作O2D⊥AB于D
∴O1O2=a+r,OO2=8-r,O1D=O1P-PD=a-r,OD=PB-PD-OB=2a-r-8,(8分)
根据勾股定理得;O1O22-O1D2=OO22-OD2
即:(a+r)2-(a-r)2=(8-r)2-(2a-r-8)2,(9分)
化简得:8r=8a-a2
∴x2=32r,即r=
1
32
x2
(10分)
∵0≤x≤8,
∴0<r≤2.(12分)
说明:其它解法相应给分
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式