已知函数f(x)=lg(ax-bx)+x中,常数a、b满足a>1>b>0,且a=b+1,那么f(x)>1的解集为(  )A.

已知函数f(x)=lg(ax-bx)+x中,常数a、b满足a>1>b>0,且a=b+1,那么f(x)>1的解集为()A.(0,1)B.(1,+∞)C.(1,10)D.(1... 已知函数f(x)=lg(ax-bx)+x中,常数a、b满足a>1>b>0,且a=b+1,那么f(x)>1的解集为(  )A.(0,1)B.(1,+∞)C.(1,10)D.(10,+∞) 展开
 我来答
万事TaZn
2014-12-02 · TA获得超过226个赞
知道答主
回答量:133
采纳率:25%
帮助的人:69.9万
展开全部
由ax-bx>0即(
a
b
)x
>1解得x>0,所以函数f(x)的定义域为(0,+∞),
因为a>1>b>0,所以ax递增,-bx递增,所以t=ax-bx递增,
又y=lgt递增,所以f(x)=lg(ax-bx)+x为增函数,
而f(1)=lg(a-b)+1=lg1+1=1,所以x>1时f(x)>1,
故f(x)>1的解集为(1,+∞).
故选B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式