完成下面的证明.已知,如图所示,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.求证:AD∥BE证明:∵ AB
完成下面的证明.已知,如图所示,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.求证:AD∥BE证明:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠...
完成下面的证明.已知,如图所示,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.求证:AD∥BE证明:∵ AB∥CD (已知)∴ ∠4 =∠ ( )∵ ∠3 =∠4 (已知)∴ ∠3 =∠ ( )∵∠1 =∠2 (已知)∴∠1+∠CAF =∠2+ ∠CAF ( )即:∠ =∠ .∴ ∠3 =∠ ( )∴ AD∥BE ( )
展开
展开全部
完成证明见解析. |
试题分析:因为AB∥CD,由此得到∠4=∠BAF,它们是同位角,由此得到根据两直线平行,同位角相等; 由∠4=∠BAF,∠3=∠4得到∠3=∠BAF的根据是等量代换; 由∠BAF=∠CAD和已知结论得到∠3=∠CAD的根据是等量代换; 由∠3=∠CAD得到AD∥BE的根据是内错角相等,两直线平行. ∵AB∥CD(已知), ∴∠4=∠ BAF ( 两直线平行,同位角相等 ). ∵∠3=∠4(已知), ∴∠3=∠ BAF ( 等量代换 ). ∵∠1=∠2(已知), ∴∠1+∠CAF=∠2+∠CAF( 等式的性质 ), 即∠ BAF =∠ CAD . ∴∠3=∠ CAD ( 等量代换 ). ∴AD∥BE( 内错角相等,两直线平行 ). |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询