如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①... 如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题: (1)如果AB=AC,∠BAC=90°, ①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为 _________ ,数量关系为 _________ . ②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么? (2)如果AB⊥AC,∠BAC≠90°,点D在线段BC上运动. 试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法) (3)若AC=4 ,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值. 展开
 我来答
伩蒝潘
推荐于2016-06-09 · TA获得超过127个赞
知道答主
回答量:180
采纳率:83%
帮助的人:63.5万
展开全部

解:(1)①CF与BD位置关系是垂直,数量关系是相等
②当点D在BC的延长线上时①的结论仍成立
由正方形ADEF得AD=AF,∠DAF=90度
∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC
又AB=AC,∴△DAB≌△FAC,
∴CF=BD   ∠ACF=∠ABD
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=45°
∴∠BCF=∠ACB+∠ACF=90°.
即CF⊥BD.
(2)当∠BCA=45°时,CF⊥BD(如图)
理由是:过点A作AG⊥AC交BC于点G,
∴AC=AG可证:△GAD≌△CAF
∴∠ACF=∠AGD=45°∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
(3)当具备∠BCA=45°时 过点A作AQ⊥BC交BC于点Q,(如图)
∵DE与CF交于点P时,
∴此时点D位于线段CQ上
∵∠BCA=45°,可求出AQ=QC=4.
设CD=x,
∴DQ=4+x
容易说明△AQD∽△DCP,


∴CP= +x,
∵0<x≤3,
∴当x=3时,CP有最大值5.25.


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式