设函数f(x)=ax3-2bx2+cx+4d (a、b、c、d∈R)图象关于原点对称,且x=1时,f(x)取极小值-23.(1)求

设函数f(x)=ax3-2bx2+cx+4d(a、b、c、d∈R)图象关于原点对称,且x=1时,f(x)取极小值-23.(1)求a、b、c、d的值;(2)当x∈[-1,1... 设函数f(x)=ax3-2bx2+cx+4d (a、b、c、d∈R)图象关于原点对称,且x=1时,f(x)取极小值-23.(1)求a、b、c、d的值;(2)当x∈[-1,1]时,图象上是否存在两点,使得过此两点处的切线互相垂直?证明你的结论;(3)若x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤43. 展开
 我来答
官卫志6614
2015-02-06 · TA获得超过193个赞
知道答主
回答量:117
采纳率:0%
帮助的人:55.2万
展开全部
(1)∵函数f(x)图象关于原点对称,∴对任意实数x,都有f(-x)=-f(x).
∴-ax3-2bx2-cx+4d=-ax3+2bx2-cx-4d,即bx2-2d=0恒成立.
∴b=0,d=0,即f(x)=ax3+cx.∴f′(x)=3ax2+c.
∵x=1时,f(x)取极小值-
2
3
.∴f′(1)=0且f(1)=-
2
3

即3a+c=0且a+c=-
2
3
.解得a=
1
3
,c=-1.
(2)当x∈[-1,1]时,图象上不存在两点,使得过此两点处的切线互相垂直
证明:假设存在x1,x2,则f'(x1)?f'(x2)=-1
所以(x12-1)(x22-1)=-1
因为x1,x2∈[-1,1]所以x12-1,x22-1∈[-1,0]
因此(x12-1)(x22-1)≠-1
所以不存在.
(3)证明:∵f′(x)=x2-1,由f′(x)=0,得x=±1.
当x∈(-∞,-1)或(1,+∞)时,f′(x)>0;当x∈(-1,1)时,f′(x)<0.
∴f(x)在[-1,1]上是减函数,且fmax(x)=f(-1)=
2
3
,fmin(x)=f(1)=-
2
3

∴在[-1,1]上,|f(x)|≤
2
3

于是x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤|f(x)max-f(x)min|=
2
3
+
2
3
=
4
3

故x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤
4
3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式