如图,四边形ABCD是正方形,点E、K分别在BC、AB上,点G在BA的延长线上,且CE=BK=AG. (1)请探究DE与DG

如图,四边形ABCD是正方形,点E、K分别在BC、AB上,点G在BA的延长线上,且CE=BK=AG.(1)请探究DE与DG有怎样的数量关系和位置关系?并说明理由.(2)以... 如图,四边形ABCD是正方形,点E、K分别在BC、AB上,点G在BA的延长线上,且CE=BK=AG. (1)请探究DE与DG有怎样的数量关系和位置关系?并说明理由. (2)以线段DE、DG为边作平行四边形DEFG,连接KF(要求:在已知图中作出相应简图),猜想四边形CEFK是怎样的特殊四边形,并说明理由. 展开
 我来答
手机用户97615
推荐于2016-08-01 · TA获得超过264个赞
知道答主
回答量:111
采纳率:0%
帮助的人:118万
展开全部
解:(1)DE=DG,DE⊥DG.理由如下:
∵四边形ABCD是正方形,
∴DC=DA,∠DCE=∠DAG=90°.
又∵CE=AG,
∴△DCE≌△GDA.
∴DE=DG,∠EDC=∠GDA.
又∵∠ADE+∠EDC=∠ADC=90°,
∴∠ADE+∠GDA=90°,
∴DE⊥DG.
(2)画图如图:截GD长,以点G,E为顶点画弧,交点为F. 四边形CEFK为平行四边形.理由如下:

∵四边形ABCD是正方形,
∴AB∥CD,AB=CD.
∵BK=AG,
∴GK=AK+AG=AK+BK=AB.
即  GK=CD.
又∵K在AB上,点G在BA的延长线上,
∴GK∥CD.
∴四边形CKGD是平行四边形.
∴DG=CK,DG∥CK.
又∵四边形DEFG都是平行四边形,
∴EF=DG,EF∥DG.
∴CK=EF,CK∥EF.
∴四边形CEFK为平行四边形.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式