概率论与数理统计
1个回答
展开全部
概率论 研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用。随着研究随机现象规律性的科学—概率论的发展,应用概率论的结果更深入地分析研究统计资料,通过对某些现象的频率的观察来发现该现象的内在规律性,并作出一定精确程度的判断和预测;将这些研究的某些结果加以归纳整理,逐步形成一定的数学概型,这些组成了数理统计的内容。 数理统计 数理统计在自然科学、工程技术、管理科学及人文社会科学中得到越来越广泛和深刻的应用,其研究的内容也随着科学技术和经济与社会的不断发展而逐步扩大,但概括地说可以分为两大类:⑴试验的设计和研究,即研究如何更合理更有效地获得观察资料的方法;⑵统计推断,即研究如何利用一定的资料对所关心的问题作出尽可能精确可靠的结论,当然这两部分内容有着密切的联系,在实际应用中更应前后兼顾。但按本专业的总体设计,我们的数理统计课程只讨论统计推断。数理统计以概率论为基础,根据试验或观察得到的数据,来研究随机现象统计规律性的学科。本课程的目的是让学生了解统计推断检验等方法并能够应用这些方法对研究对象的客观规律性作出种种合理的估计和判断。掌握总体参数的点估计和区间估计。掌握假设检验的基本方法与技巧。理解平方差分析及回归分析的原理,并能运用其方法和技巧进行统计推断。 数理统计是概率论在实际生活中的应用!
追问
哥,,,求解答图片的题目啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询