(siny-ysiny)dy的积分
(siny-ysiny)dy的积分是-cosy+ycosy-siny+C。
解答过程如下:
∫(sinysiny)dy
=∫sinydy+∫ydcosy
=-cosy+ycosy-∫cosydy+c1
=-cosy+ycosy-cosy+C
扩展资料
导函数条件:
如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。
例如:f(x)=|x|在x=0处虽连续,但不可导(左导数-1,右导数1)
上式中,后两个式子可以定义为函数在x-处的左右导数:
左导数:f(x-)=-1
右导数:f(x-)=1
(siny-ysiny)dy的积分是:
扩展资料:
积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。
要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。
但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。
参考资料来源:百度百科-积分
=∫[0:1]sinydy+∫[0:1]yd(cosy)
=-cosy|[0:1]+y·cosy|[0:1]-∫[0:1]cosydy
=-(cos1-cos0)+(1·cos1-0·cos0)-siny|[0:1]
=-(cos1-1)+(cos1-0)-(sin1-sin0)
=-cos1+1+cos1-0-sin1+0
=1-sin1